- •Введение
- •Раздел первый
- •1.2. Определение химии
- •1.3. Атомно-молекулярное учение
- •1.4. Основные стехиометрические законы химии
- •1.5. Значение химии в развитии техники
- •Глава 2. Строение атомов. Периодический закон и периодическая система химических элементов д.И. Менделеева
- •2.1. Первые модели строения атома
- •2.2. Квантово-механическая модель атома водорода
- •2.3. Квантовые числа
- •2.4. Атомные орбитали
- •2.5. Многоэлектронные атомы
- •2.6. Распределение электронов по энергетическим уровням и подуровням у элементов малых периодов
- •2.7. Распределение электронов по энергетическим уровням и подуровням у элементов больших периодов
- •2.8. Периодический закон д. И. Менделеева
- •2.9. Структура периодической системы химических элементов д. И. Менделеева
- •2.10. Свойства атомов элементов в периодической системе
- •2.11. Закономерности изменения свойств элементов и их соединений в периодической системе
- •Глава 3. Химическая связь и строение молекул
- •3.1. Развитие теории химической связи
- •3.2. Ковалентная связь. Кривая потенциальной энергии
- •3.3. Основные количественные характеристики ковалентной связи
- •3.4. Квантово – механическая теория валентности
- •3.5. Донорно – акцепторный механизм образования ковалентной связи
- •3.6. Свойства ковалентной связи
- •3.7. Метод молекулярных орбиталей
- •3.8. Ионная связь
- •3.9. Водородная связь
- •3.10. Межмолекулярное взаимодействие
- •Глава 4. Кристаллическое состояние вещества
- •4.1. Макроскопические свойства кристаллов
- •4.2. Внутреннее строение кристаллов
- •4.3. Виды элементарных ячеек
- •4.4. Металлическая связь
- •4.5. Реальные кристаллы и нарушения кристаллической структуры
- •Раздел второй
- •5.2. Первый закон термодинамики
- •5.3. Энтальпия образования химических соединений
- •5.4. Энтропия. Второй закон термодинамики
- •5.5. Третий закон термодинамики
- •5.6. Энергия Гиббса. Направленность химических реакций
- •164,9 КДж; 172,41 Дж/моль∙к;
- •Глава 6. Скорость химических реакций. Химическое равновесие
- •6.1. Влияние внешних факторов на скорость химических реакций
- •6.2. Химическое равновесие
- •6.3. Цепные реакции
- •6.4. Фазовые равновесия
- •6.5. Катализаторы и каталитические системы
- •Раздел третий растворы
- •Глава 7. Общие свойства растворов
- •7.1. Механизм процессов растворения
- •7.2. Способы выражения количественного состава растворов
- •100 ∙ 10,91 Моль % h2so4
- •7.3. Энергетика растворения
- •7.4. Свойства растворов неэлектролитов
- •7.5. Свойства растворов электролитов
- •7.6. Электролитическая диссоциация воды. Водородный показатель
- •7.7. Произведение растворимости. Гидролиз солей
- •Глава 8. Окислительно-восстановительные реакции
- •8.1.Общие понятия об окислительно- восстановительных реакциях
- •8.2. Классификация окислителей и восстановителей
- •8.3. Количественная характеристика окислительно-восстановительных реакций
- •8.4. Методы составления уравнения окислительно-восстановительных реакций
- •8.5. Влияние факторов на характер и направление реакций
- •8.6. Типы окислительно-восстановительных реакций
- •Глава 9. Электрохимические процессы
- •9.1. Строение двойного электрического слоя
- •9.2. Гальванические элементы
- •9.3. Стандартный водородный электрод
- •9.4. Поляризационные явления в гальванических элементах
- •9.5. Химические источники тока
- •9.6. Аккумуляторы
- •9.7. Топливные элементы
- •9.8. Теоретические основы электролиза
- •9.9. Последовательность электродных процессов
- •9.10. Техническое применение электролиза
- •Глава 10. Коррозия и защита металлов
- •10.1. Общие сведения о коррозии
- •10.2. Классификация коррозионных процессов
- •10.3. Количественная и качественная оценка коррозии и коррозионной стойкости
- •10.4. Химическая коррозия
- •10.5. Электрохимическая коррозия
- •10.6. Методы защиты от электрохимической коррозии
- •Раздел четвертый
- •11.2. Электропроводность металлов, полупроводников и диэлектриков
- •11.3. Химические свойства металлов высокой проводимости
- •11.4. Электропроводимость металлов подгруппы меди
- •11.5. Химические свойства магнитных материалов
- •11.6. Магнитные свойства металлов семейства железа
- •Глава 12. Химическая идентификация и анализ вещества
- •12.1. Химическая идентификация вещества
- •12.2. Количественный анализ
- •12.3. Инструментальные методы анализа
- •Заключение
- •Библиографический список
- •Глава 1. Основные понятия химии. Предмет и задачи
- •Глава 2. Строение атомов. Периодический закон и
- •Глава 3. Химическая связь и строение молекул………..54
- •Глава 4. Кристаллическое состояние вещества………..103
- •Глава 12. Химическая идентификация и анализ
2.9. Структура периодической системы химических элементов д. И. Менделеева
Периодическая система химических элементов – это строго упорядоченное множество химических элементов, их естественная классификация, являющаяся табличным или другим графическим выражением периодического закона.
Известно большое число различных вариантов таблиц периодической системы. Однако наиболее широкое применение получили только те из них, которые оказались близкими к таблице составленной Д.И. Менделеевым. В настоящее время применяют преимущественно две формы периодической системы: длиннопериодную и короткопериодную.
Вертикальные графы периодической системы называются группами,а горизонтальные –периодами. Короткопериодная форма состоит из восьми групп и семи периодов. Семейства лантаноидов и актиноидов расположены под таблицей.
Период - последовательный ряд элементов, в атомах которых происходит заполнение электронами одинакового числа энергетических уровней (число уровней равно номеру периода). Периоды содержат2, 8, 8, 18, 32и32элементов. Последний период незавершен. Разное число элементов в периодах объясняется различной последовательностью заполнения энергетических подуровней. Элементы, у которых электронами заполняетсяs-подуровень, называютсяs- элементами, у которых заполняетсяр- подуровень –р- элементами, у которых заполняетсяd- иf- подуровни - соответственноd- иf- элементами. Периоды начинаются щелочными металлами, в атомах которых на новом электронном уровне появляетсяs- электрон. Заканчиваются периоды элементами, в атомах которых полностью заполненp- подуровень внешнего уровня шестью электронами (инертные газы), кроме первого периода, заканчивающегося гелием, у которого уровень застраивается 2-мяs- электронами. В 4-ом и 5-ом периодах междуs- иp-элементами помещены 10d- элементов, а в 6-ом и 7-ом периодах- 10d-элементов и 14f-элементов.
Периодическая система состоит из 8-ми групп (или из 32 групп в длиннопериодном варианте системы). Группы обозначаются римскими цифрами I - VIIIи состоят из двух подгрупп:АиБ.
Каждая группа состоит из элементов, атомы которых имеют подобное строение электронных оболочек. Например, у калия [Ar] 4s1 (IA), а меди -[Ar] 3d10 4s1 (I Б). У этих элементов на внешнем4s-подуровне имеется по одному электрону. Элементы, входящие в состав одной группы, называютсяэлектронными аналогами.
Элементы, входящие в состав одной подгруппы, являются полными электронными аналогами,так как имеют одинаковое строение электронных уровней. Например, элементыI Aгруппы имеют общую формулуns1, а элементыI Б -(n-1) d10 ns1.
С момента опубликования периодической системы элементов в ней появилось более 40 новых элементов. На основе периодического закона были получены искусственным путем трансурановые элементы с атомными номерами от 93 до 105 (всего 15). Их получение основано на использовании самого тяжелого из существующих на Земле элемента - урана-238, ядра которого “ надстраивают “ путем бомбардировки нейтронами. Так получают элементы до фермия 100 Fm257в ядерных реакторах. Так же образуются трансураниды и при термоядерных взрывах.
Все элементы с атомными номерами более 100 получают в ускорителях. Тяжелые атомные ядра (мишени) бомбардируются тяжелыми ионами. Те и другие после испускания нейтронов сливаются, образуя новые элементы с суммой атомных номеров компонентов. Периодическая система развивается, открываются новые элементы. По теории вероятности, рассчитанной с помощью современной вычислительной техники, предсказывается, что в 8-ом периоде должно содержаться 50 элементов, среди которых будет находиться новая группа химически близких элементов, состоящая из 18 элементов, называемых пока октадеканоидами (Z = 121-138). Верхняя граница возможной стабильности, как ее позволяет определить современный уровень знаний, находится близко к атомному номеру 174. Однако и это не предел, так как, например, из диаграммы стабильности химических элементов по Сиборгу, возможно существование элементов с атомными номерами до 500.