- •Содержание
- •Как читать эту книгу и как ею пользоваться
- •Глава 1
- •1.2. Шкалы измерения
- •1.3. Распределение признака. Параметры распределения
- •1.4. Статистические гипотезы
- •Направленные гипотезы
- •Ненаправленные гипотезы
- •1.5. Статистические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •1.6. Уровни статистической значимости
- •Правило отклонения h0 и принятия h1
- •1.7. Мощность критериев
- •1.8. Классификация задач и методов их решения
- •1.9. Принятие решения о выборе метода математической обработки
- •Алгоритм 1
- •Алгоритм 2
- •1.10. Список обозначений Латинские обозначения:
- •Греческие обозначения:
- •Глава 2 выявление различий в уровне исследуемого признака
- •2.1. Обоснование задачи сопоставления и сравнения
- •2.2. Q - критерий Розенбаума
- •Алгоритм 3 Подсчет критерия q Розенбаума
- •Правила ранжирования
- •Алгоритм 4 Подсчет критерия u Манна-Уитни.
- •2.4. Н - критерий Крускала-Уоллиса
- •Алгоритм 5 Подсчет критерия н Крускала-Уоллиса
- •Алгоритм 6 Подсчет критерия s Джонкира
- •2.6. Задачи для самостоятельной работы
- •2.7. Алгоритм принятия решения о выборе критерия для сопоставлений
- •Глава 3 оценка достоверности сдвига в значениях исследуемого признака
- •3.1. Обоснование задачи исследований изменений
- •3.2. G- критерий знаков
- •Алгоритм 8 Расчет критерия знаков g
- •Алгоритм 9 Подсчет критерия т Вилкоксона
- •3.4. Критерий χ2r Фридмана
- •Алгоритм 10 Подсчет критерия χ2r Фридмана
- •3.5. L - критерий тенденций Пейджа
- •Алгоритм 11 Подсчет критерия тенденций l Пейджа
- •3.6. Задачи для самостоятельной работы
- •3.7. Алгоритм принятия решения о выборе критерия оценки изменений
- •Глава 4 выявление различий в распределении признака
- •4.1. Обоснование задачи сравнения распределений признака
- •4,2. Χ2 критерий Пирсона
- •Шутливый пример
- •Алгоритм 13 Расчет критерия χ2
- •Алгоритм 14 Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
- •Алгоритм 15 Расчет критерия λ при сопоставлении двух эмпирических распределений
- •Глава 5 многофункциональные статистические критерии
- •5.1. Понятие многофункциональных критериев
- •5.2. Критерий φ* — угловое преобразование Фишера
- •Алгоритм 17 Расчет критерия φ*
- •5.3. Биномиальный критерий ш Назначение критерия m
- •Алгоритм 18 Применение биномиального критерия m
- •5.4. Многофункциональные критерии как эффективные заменители традиционных критериев
- •5.5. Задачи для самостоятельной работы
- •5.6. Алгоритм выбора многофункциональных критериев
1.7. Мощность критериев
Мощность критерия - это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.
Ошибка, состоящая в том, что мы приняли нулевую гипотезу, в то время как она неверна, называется ошибкой II рода.
Вероятность такой ошибки обозначается как β. Мощность критерия - это его способность не допустить ошибку II рода, поэтому:
Мощность=1—β
Мощность критерия определяется эмпирическим путем. Одни и те же задачи могут быть решены с помощью разных критериев, при этом обнаруживается, что некоторые критерии позволяют выявить различия там, где другие оказываются неспособными это сделать, или выявляют более высокий уровень значимости различий. Возникает вопрос: а зачем же тогда использовать менее мощные критерии? Дело в том, что основанием для выбора критерия может быть не только мощность, но и другие его характеристики, а именно:
а) простота;
б) более широкий диапазон использования (например, по отношению к данным, определенным по номинативной шкале, или по отношению к большим n);
в) применимость по отношению к неравным по объему выборкам;
г) большая информативность результатов.
1.8. Классификация задач и методов их решения
Множество задач психологического исследования предполагает те или иные сопоставления. Мы сопоставляем группы испытуемых по какому-либо признаку, чтобы выявить различия между ними по этому признаку. Мы сопоставляем то, что было "до" с тем, что стало "после" наших экспериментальных или любых иных воздействий, чтобы определить эффективность этих воздействий. Мы сопоставляем эмпирическое распределение значений признака с каким-либо теоретическим законом распределения или два эмпирических распределения между собой, с тем, чтобы доказать неслучайность выбора альтернатив или различия в форме распределений.
Мы, далее, можем сопоставлять два признака, измеренные на одной и той же выборке испытуемых, для того, чтобы установить степень согласованности их изменений, их сопряженность, корреляцию между ними.
Наконец, мы можем сопоставлять индивидуальные значения, полученные при разных комбинациях каких-либо существенных условий, с тем чтобы выявить характер взаимодействия этих условий в их влиянии на индивидуальные значения признака.
Именно эти задачи позволяет решить тот набор методов, который предлагается настоящим руководством. Все эти методы могут быть использованы при так называемой "ручной" обработке данных.
Краткая классификация задач и методов дана в Таблице 1.2.
Таблица 1.2
Классификация задач |
и методов их решения | |
Задачи |
Условия |
Методы |
1. Выявление различий в уровне исследуемого признака |
а) 2 выборки испытуемых |
Q - критерий Розенбаума; U - критерий Манна-Уитни; φ*- критерий (угловое преобразование Фишера) |
|
б) 3 и более выборок испытуемых |
S - критерий тенденций Джонкира; Н- критерий Крускала-Уоллиса. |
2. Оценка сдвига значений исследуемого признака |
а) 2 замера на одной и той же выборке испытуемых |
Т- критерий Вилкоксона; G - критерий знаков; φ*- критерий (угловое преобразование Фишера). |
|
б) 3 и более замеров на одной и той же выборке испытуемых |
χл2 - критерий Фридмана; L - критерий тенденций Пейджа. |
3. Выявление различий в распределении |
а) при сопоставлении эмпирического признака распределения с теоретическим |
χ2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; m - биномиальный критерий. |
|
б) при сопоставлении двух эмпирических распределений |
χ2 - критерий Пирсона; λ- критерий Колмогорова-Смирнова; φ*- критерий (угловое преобразование Фишера). |
4.Выявление степени согласованности изменений |
а) двух признаков |
rs - коэффициент ранговой корреляции Спирмена. |
|
б) двух иерархий или профилей |
rs - коэффициент ранговой корреляции Спирмена. |
5. Анализ изменений признака под влиянием контролируемых условий |
а) под влиянием одного фактора |
S - критерий тенденций Джонкира; L - критерий тенденций Пейджа; однофакторный дисперсионный анализ Фишера. |
|
б) под влиянием двух факторов одновременно |
Двухфакторный дисперсионный анализ Фишера. |