- •Содержание
- •Как читать эту книгу и как ею пользоваться
- •Глава 1
- •1.2. Шкалы измерения
- •1.3. Распределение признака. Параметры распределения
- •1.4. Статистические гипотезы
- •Направленные гипотезы
- •Ненаправленные гипотезы
- •1.5. Статистические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •1.6. Уровни статистической значимости
- •Правило отклонения h0 и принятия h1
- •1.7. Мощность критериев
- •1.8. Классификация задач и методов их решения
- •1.9. Принятие решения о выборе метода математической обработки
- •Алгоритм 1
- •Алгоритм 2
- •1.10. Список обозначений Латинские обозначения:
- •Греческие обозначения:
- •Глава 2 выявление различий в уровне исследуемого признака
- •2.1. Обоснование задачи сопоставления и сравнения
- •2.2. Q - критерий Розенбаума
- •Алгоритм 3 Подсчет критерия q Розенбаума
- •Правила ранжирования
- •Алгоритм 4 Подсчет критерия u Манна-Уитни.
- •2.4. Н - критерий Крускала-Уоллиса
- •Алгоритм 5 Подсчет критерия н Крускала-Уоллиса
- •Алгоритм 6 Подсчет критерия s Джонкира
- •2.6. Задачи для самостоятельной работы
- •2.7. Алгоритм принятия решения о выборе критерия для сопоставлений
- •Глава 3 оценка достоверности сдвига в значениях исследуемого признака
- •3.1. Обоснование задачи исследований изменений
- •3.2. G- критерий знаков
- •Алгоритм 8 Расчет критерия знаков g
- •Алгоритм 9 Подсчет критерия т Вилкоксона
- •3.4. Критерий χ2r Фридмана
- •Алгоритм 10 Подсчет критерия χ2r Фридмана
- •3.5. L - критерий тенденций Пейджа
- •Алгоритм 11 Подсчет критерия тенденций l Пейджа
- •3.6. Задачи для самостоятельной работы
- •3.7. Алгоритм принятия решения о выборе критерия оценки изменений
- •Глава 4 выявление различий в распределении признака
- •4.1. Обоснование задачи сравнения распределений признака
- •4,2. Χ2 критерий Пирсона
- •Шутливый пример
- •Алгоритм 13 Расчет критерия χ2
- •Алгоритм 14 Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
- •Алгоритм 15 Расчет критерия λ при сопоставлении двух эмпирических распределений
- •Глава 5 многофункциональные статистические критерии
- •5.1. Понятие многофункциональных критериев
- •5.2. Критерий φ* — угловое преобразование Фишера
- •Алгоритм 17 Расчет критерия φ*
- •5.3. Биномиальный критерий ш Назначение критерия m
- •Алгоритм 18 Применение биномиального критерия m
- •5.4. Многофункциональные критерии как эффективные заменители традиционных критериев
- •5.5. Задачи для самостоятельной работы
- •5.6. Алгоритм выбора многофункциональных критериев
Алгоритм 14 Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).
2. Подсчитать относительные эмпирические частоты (частости) для каждого разряда по формуле:
f*эмп=fэмп/n
где fэмп - эмпирическая частота по данному разряду;
п - общее количество наблюдений. Занести результаты во второй столбец.
3. Подсчитать накопленные эмпирические частости Σf*j по формуле:
где Σf*j=Σf*j-1+f*j - частость, накопленная на предыдущих разрядах; j - порядковый номер разряда; f*j- эмпирическая частость данного /-го разряда. Занести результаты в третий столбец таблицы.
4. Подсчитать накопленные теоретические частости для каждого раз ряда по формуле:
Σf*т j=Σf*Т j-1+f*т j где Σf*т j-1 - теоретическая частость, накопленная на предыдущих
разрядах;
j - порядковый номер разряда;
f*т j - теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.
5. Вычислить разности между эмпирическими и теоретическими нако пленными частостями по каждому разряду (между значениями 3-го и 4-го столбцов).
6. Записать в пятый столбец абсолютные величины полученных раз ностей, без их знака. Обозначить их как d.
7. Определить по пятому столбцу наибольшую абсолютную величину разности - dmax.
8. По Табл. X Приложения 1 определить или рассчитать критические значения dmax для данного количества наблюдений n.
Если dmax равно критическому значению d или превышает его, различия между распределениями достоверны.
Пример 2: сопоставление двух эмпирических распределений
Интересно сопоставить данные, полученные в предыдущем примере, с данными обследования X. Кларом 800 испытуемых (Klar H., 1974, р. 67). X. Кларом было показано, что желтый цвет является единственным цветом, распределение которого по 8 позициям не отличается от равномерного. Для сопоставлений им использовался метод % Полученные им эмпирические частоты представлены в Табл. 4.18.
Таблица 4.18
Эмпирические частоты попадания желтого цвета на каждую из 8 позиций в исследовании X. Клара (по: Klar H., 1974) (n=800)
Сформулируем гипотезы.
Н0: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара не различаются.
H1: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара отличаются друг от друга.
Поскольку в данном случае мы будем сопоставлять накопленные эмпирические частости по каждому разряду, теоретические частости нас не интересуют.
Все расчеты будем проводить в таблице по алгоритму 15.
Алгоритм 15 Расчет критерия λ при сопоставлении двух эмпирических распределений
1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты, полученные в распределении 1 (первый столбец) и в распределении 2 (второй столбец).
2. Подсчитать эмпирические частости по каждому разряду для распределения 1 по формуле:
f*э=fэ/n1
где fэ - эмпирическая частота в данном разряде;
п1 - количество наблюдений в выборке. Занести эмпирические частости распределения 1 в третий столбец.
3. Подсчитать эмпирические частости по каждому разряду для распределения 2 по формуле:
f*э=fэ/n2
где fэ - эмпирическая частота в данном разряде;
n2 - количество наблюдений во 2-й выборке.
Занести эмпирические частости распределения 2 в четвертый столбец таблицы.
4. Подсчитать накопленные эмпирические частости для распределения 1 по формуле:
где Σf*j-1 - частость, накопленная на предыдущих разрядах;
j - порядковый номер разряда;
f*j-1- частость данного разряда.
Полученные результаты записать в пятый столбец.
5. Подсчитать накопленные эмпирические частости для распределения 2 по той же формуле и записать результат в шестой столбец.
6. Подсчитать разности между накопленными частостями по каждому разряду. Записать в седьмой столбец абсолютные величины разностей, без их знака. Обозначить их как d.
7. Определить по седьмому столбцу наибольшую абсолютную величину разности
8. Подсчитать значение критерия λ по формуле:
где п1 - количество наблюдений в первой выборке;
n2 - количество наблюдений во второй выборке.
9. По Табл. XI Приложения 1 определить, какому уровню статистической зна- чимости соответствует полученное значение λ.
Если λэмп>1,36, различия между распределениями достоверны.
Последовательность выборок может быть выбрана произвольно, так как расхождения между ними оцениваются по абсолютной величине разностей. В нашем случае первой будем считать отечественную выборку, второй - выборку Клара.
Таблица 4.19
Расчет критерия при сопоставлении эмпирических распределений желтого цвета в отечественной выборке (n1=102) и выборке Клара (n2=800)
Максимальная разность между накопленными эмпирическими частостями составляет 0,118 и падает на второй разряд.
В соответствии с пунктом 8 алгоритма 15 подсчитаем значение Я,:
По Табл. XI Приложения 1 определяем уровень статистической значимости полученного значения: р=0,16
Построим для наглядности ось значимости.
На оси указаны критические значения λ, соответствующие принятым уровням значимости: λ0,05=1,36, λ0,01=1,63.
Зона значимости простирается вправо, от 1,63 и далее, а зона незначимости - влево, от 1,36 к меньшим значениям.
λэмп>λкр
Ответ: Н0 принимается. Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара совпадают. Таким образом, распределения желтого цвета в двух выбор-ках не различаются, но в то же время они по-разному соотносятся с равномерным распределением: у Клара отличий от равномерного распределения не обнаружено, а в отечественной выборке различия обнаружены (ρ<0,05). Возможно, картину могло бы прояснить применение другого метода?
Е.В. Гублер (1978) предложил сочетать использование критерия λ, с критерием φ* (угловое преобразование Фишера).
Об этих возможностях сочетания методов λ и φ* мы поговорим в следующей главе (см. пример 4 п. 5.2).
4.4. Задачи для самостоятельной работы .
ВНИМАНИЕ!
При выборе способа решения задачи рекомендуется пользоваться
АЛГОРИТМОМ 16
Задача 6
В проективной методике X. Хекхаузена (модификация ТАТ) испытуемому последовательно предъявляются 6 картин. Всякий раз он сначала рассматривает картину в течение 20 сек, а затем в течение 5 минут пишет по ней рассказ, стараясь, в соответствии с инструкцией, проявить "максимум фантазии и воображения". После того, как испытуемый закончит писать первый рассказ, ему предъявляется вторая картина, и т. д. В данном исследовании разным испытуемым картины предъявлялись в разном порядке, так что каждая картина оказывалась первой, второй, третьей и т.д. примерно одинаковое количество раз (Сидоренко Е. В., 1977).
При обследовании 113 студентов в возрасте от 20 до 35 лет; (средний возраст 23,2 года, 67 мужчин, 46 женщин) было установле-но, что в рассказах по картинам с условными названиями "Препо-даватель и ученик" и "Мастер измеряет деталь" словесные формулировки, отражающие "боязнь неудачи", встречаются гораздо чаще, чем в рассказах по другим картинам, в особенности по картине "Улыбающийся юноша" (см. Табл. 4.20).
Вопросы:
Можно ли утверждать, что картины методики обладают разной по будительной силой в отношении мотивов: а) "надежда на успех"; б) боязнь неудачи"?
Как следует из Табл. 4.20, нет почти ни одной картины, которая в равной мере стимулировала бы мотив "надежда на успех" и мотив "боязнь неудачи". Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?
Таблица 4.20
Эмпирическое распределение словесных формулировок, отражающих мотивы "надежда на успех" и "боязнь неудачи" (n=113)
Задача 7
В процессе проведения транзактно-аналитических сессий установлено, что запреты на "психологические поглаживания21" встречаются с неодинаковой частотой. Например, многие участники тренинга признают у себя запрет "Не проси психологических поглаживаний у других людей", а запрет "Не давай психологических поглаживаний самому себе" встречается гораздо реже (см. Табл. 4.21).
Таблица 4.21
Частота встречаемости запретов на психологические поглаживания (n=166)
Вопросы:
Можно ли считать, что распределение запретов не является равномерным?
Можно ли утверждать, что запрет "Не проси" встречается достоверно чаще остальных?
Задача 8
В социально-психологическом исследовании стереотипов мужественности Н. В. Стан (1992) выборке из 31 женщин с высшим образованием в возрасте от 22 до 49 лет (средний возраст 35 лет) предъявлялись напечатанные на отдельных карточках перечни качеств, характеризующих один из четырех типов мужественности: мифологический, национальный, современный и религиозный. Испытуемым предлагалось внимательно ознакомиться с предложенными описаниями и выбрать из них то, которое в большей степени соответствует их представлению об идеальном мужчине. Затем испытуемым предлагалось выбрать одну из 3 оставшихся карточек, а затем одну из двух оставшихся. Результаты эксперимента представлены в Табл. 4.22.
Таблица 4.22
Распределение частот предпочтений 4 типов мужественности
Вопросы:
Различаются ли распределения предпочтений, выявленные по каждому из 4-х типов, между собой?
Можно ли утверждать, что предпочтение отдается какому-то одному или двум из типов мужественности? Наблюдается ли какая-либо групповая тенденция предпочтений?