Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_metodichka.docx
Скачиваний:
63
Добавлен:
28.05.2015
Размер:
4.7 Mб
Скачать

Элементы специальной теории относительности

В специальной теории относительности рассматриваются только инерциальные системы отсчета. Во всех задачах считается, что оси у, у' и z, z' сонаправлены, а относительная скорость v0 системы координат К' относительно системы К направлена вдоль общей оси хх'.

• Релятивистское (лоренцево) сокращение длины стержня:

где l0 — длина стержня в системе координат К',относительно которой стержень покоится (собственная длина). Стержень параллелен оси х';l длина стержня, измеренная в системе К,относительно которой он движется со скоростью ; с — скорость распространения электромагнитного излучения.

• Релятивистское замедление хода часов

,

где Δt0 — интервал времени между двумя событиями, происходящими в одной точке системы , измеренный по часам этой системы (собственное время движущихся часов); Δt — интервал времени между двумя событиями, измеренный по часам системы K.

• Релятивистское сложение скоростей

,

где — относительная скорость (скорость тела относительно системыK'); — переносная скорость (скорость системыK' относительно К), — абсолютная скорость (скорость тела относительно системы К).

В теории относительности абсолютной скоростью называется скорость тела в системе координат, условно принятой за неподвижную.

• Релятивистский импульс:

.

• Полная энергия релятивистской частицы

,

где T — кинетическая энергия частицы; — ее энергия покоя. Частица называется релятивистской, если скорость частицы сравнима со скоростью света, и классической, если.

• Связь полной энергии с импульсом релятивистской частицы:

.

• Связь кинетической энергии с импульсом релятивистской частицы

.

Механические колебания и волны

• Уравнение гармонических колебаний:

где х — смещение колеблющейся точки от положения равновесия; t — время; А, ω, φ— соответственно амплитуда, угловая частота, начальная фаза колебаний; — фаза колебаний в моментt.

• Угловая частота колебаний:

, или ,

где ν и Т — частота и период колебаний.

• Скорость точки, совершающей гармонические колебания:

.

• Ускорение при гармоническом колебании

.

• Амплитуда Арезультирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле:

где А1и А2амплитуды составляющих колебаний; φ1 и φ2— их начальные фазы.

• Начальная фаза φ результирующего колебания может быть найдена из формулы:

.

• Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по значению частотами ν1 и ν2,

.

• Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A1 и A2 и начальными фазами φ1 и φ2:

.

• Дифференциальное уравнение гармонических колебаний материальной точки:

, или ,

где m — масса точки; kкоэффициент квазиупругой силы ().

• Полная энергия материальной точки, совершающей гармонические колебания:

.

• Период колебаний тела, подвешенного на пружине (пружин­ный маятник):

,

где m — масса тела; kжесткость пружины. Формула справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (при малой массе пружины в сравнении с массой тела).

Период колебаний математического маятника

,

где l — длина маятника; gускорение свободного падения.

Период колебаний физического маятника

,

где J— момент инерции колеблющегося тела относительно осиколебаний; а — расстояние центра масс маятника от оси колебаний;— приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконечно малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не болееошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити:

,

где Jмомент инерции тела относительно оси, совпадающей с упругой нитью; Kжесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

• Дифференциальное уравнение затухающих колебаний или,

где r— коэффициент сопротивления; δкоэффициент затухания: ;ω0— собственная угловая частота колебаний .

• Уравнение затухающих колебаний:

где A(t) — амплитуда затухающих колебаний в момент t;ω — их угловая частота.

• Угловая частота затухающих колебаний:

.

• Зависимость амплитуды затухающих колебаний от времени

,

где А0амплитуда колебаний в момент t=0.

• Логарифмический декремент колебаний:

,

где A(t) и A(t+T) — амплитуды двух последовательных колебаний, отстоящих по времени друг от друга на период.

• Дифференциальное уравнение вынужденных колебаний

или,

где — внешняя периодическая сила, действующая наколеблющуюся материальную точку и вызывающая вынужденныеколебания;F0ее амплитудное значение;.

• Амплитуда вынужденных колебаний:

.

• Резонансная частота и резонансная амплитуда:

и.