
Калин Физическое материаловедение Том 5 2008
.pdf
силового привода из сплава с памятью формы в конструкциях саморазворачивающихся агрегатов дает следующие преимущества: компактность конструкции при доставке в космос на борту корабля; снижение массы из-за отсутствия замков, приводов, механизмов; сохранение жесткости конструкции при воздействии солнечной теплоты.
Марка никелида титана ТН-1 была использована в одном из блоков орбитальной станции «Мир» в качестве материала муфты термомеханического соединения фермы длиной 14,5 м, изготовленной из алюминиевого сплава. На рис. 22.40 представлена схема этого соединения.
Рис. 22.40. Схема термомеханического соединения:
1, 2 − соединяемые детали; 3 − муфта из материала с памятью формы
Муфту первоначально увеличивают в диаметре деформированием при температуре ниже окончания прямого мартенситного превращения Мк, свободно надевают на деталь и затем производят нагрев выше температуры начала аустенитного превращения Aн. В результате формовосстановления муфта прижимается к соединяемым деталям, обеспечивая скрепление с нужным усилием.
Большое практическое значение представляют механизмы, где сплав с памятью формы используется в качестве силового элемента привода разового действия, например для расстыковки блоков. В полете, после прохождения команды на расстыковку блоков, включается система электрического обогрева привода. В процессе обратного мартенситного превращения в приводе, выполненном из сплава с памятью формы, генерируются значительные напряжения, позволяющие осуществить расстыковку и при этом изменить скорости движения блоков.
Особый интерес представляет использование сплавов с памятью формы в технологических процессах производства летательных
631
аппаратов. Это, в первую очередь, касается конструкций с клепаными и болтовыми соединениями. При создании клепаных соединений, в которых материал, обладающий ЭПФ, используется для изготовления заклепок, необходимо, чтобы формообразование производилось по типовой стандартной технологии. Предварительно проводится термическая обработка на память с последующим охлаждением и пластическим деформированием с целью придания заклепке формы, удобной для сборки. Далее следует только вставить ее в соответствующее отверстие и нагреть, чтобы заклепка восстановила свою форму и скрепила узел конструкции.
Быстрая установка и сборка, не требующая высококвалифицированного персонала, герметичность и коррозионная стойкость соединения, отсутствие проблемы высоких температур, присущей сварке и пайке, позволили разработать и осуществить технологический процесс сборки трубопроводов с помощью такой муфты, изготовленной из материала с памятью формы на самолетах ВВС США Р-14. Были проведены испытания около 100000 соединений, позволившие рекомендовать эти соединения во всех гидро- и газовых системах самолетов, космических кораблей, атомных подводных лодок.
Проблемы транспортирования отработавшего ядерного топлива (ОЯТ) и создания контейнеров для его длительного хранения являются весьма важными и одновременно очень сложными. Основная задача – выбор оптимальных материалов как для конструкции контейнера в целом, так и для отдельных его элементов, среди которых одним из наиболее ответственных является узел уплотнения, обеспечивающий герметичность контейнера. Выбор материала для герметизирующих прокладок − серьезная проблема, в первую очередь, из-за широкого диапазона возможных рабочих температур (−40…+800 °С). Элементы системы герметизации должны быть изготовлены из негорящих материалов, устойчивых к коррозии при воздействии как радиоактивных веществ, так и растворов кислот, щелочей и других веществ, применяемых при дезактивации.
В качестве уплотняющего материала как конкурирующие рассматриваются эластомеры и металлы. К эластомерам относятся: натуральный каучук, твердая бутиловая резина, полиуретаны, си-
632

ликоновая резина, мягкая бутиловая резина. Главным преимуществом эластомеров как материалов прокладки является возможность значительной (порядка сотен процентов) обратимой деформации, что определяет их широкое применение в технике. Однако очевидно, что эластомеры, а также полимерные материалы (как возможные уплотнители) не могут в полной мере удовлетворять жестким требованиям к материалам прокладки контейнеров для транспортирования и хранения ОЯТ.
С этой точки зрения металлические материалы представляются более перспективными в качестве материала прокладки, однако они характеризуются существенно меньшей величиной упругой обратимой деформации (порядка нескольких долей процента).
В этой связи с целью повышения надежности и служебных характеристик узла герметизации контейнеров возможно в качестве альтернативных металлических материалов для уплотнения крышек контейнеров использовать сплавы с ЭПФ и СУ. Такой уплотнитель может быть как одно-двухслойным, так и многослойным
(рис. 22.41).
Рис. 22.41. Схема уплотнения крышки контейнера с использованием сплавов
сэффектом памяти формы, работающих в низкотемпературной (НТ)
ивысокотемпературной (ВТ) областях, и наружных пластичных металлических сплавов
Вкачестве перспективных материалов с ЭПФ и СУ для основного уплотнителя прокладки рассматриваются сплавы нитинол системы Ni-Ti, характеризующиеся температурным интервалом
проявления обратимого мартенситного превращения −50…+100 °С в зависимости от состава, дополнительного легирования и струк- турно-фазового состояния сплава.
633

комнатной температуре минимально (α 1 10–6 К–1), т.е. сплав практически не расширяется и принадлежит к типу инварных сплавов (или не меняющих свои размеры при нагревании). Другой признак инварности сплавов с содержанием 34–45 % Ni – отрицательное значение ТКЛР в интервале температур ниже –240 °С.
Кривая зависимости α от концентрации никеля при 0 °С по форме совпадает с кривой зависимости энергетического положения максимума спектра валентных электронов от состава сплавов системы Fe−Ni. Это совпадение не является случайным. По мере увеличения содержания Fe в сплаве с никелем происходит заполнение антисвязывающей части 3d-полосы никеля. Благодаря этому уменьшается плотность состояний на уровне Ферми и соответственно снижаются силы связи, а также несколько понижается α. После повышения концентрации Fe в сплаве свыше 50 %, более крутое понижение α связано с окончанием заполнения 3d-полосы никеля и с началом заполнения 3d-полосы железа. При этом происходит повышение плотности состояний на уровне Ферми.
Таким образом, инварность сплавов Fe−Ni в области составов с концентрацией около 64 % Fe объясняется особенностью электронной структуры – это высокая плотность состояний на уровне Ферми и ее чувствительность к влиянию температуры.
Необходимо отметить, что значения ТКЛР чистых компонентов этого сплава (при 0 °С для Fe α = 11,3 10–6 К–1, для Ni 13,4 10–6 К–1) значительно превышает приведенного для сплава Fe–36 % Ni.
Для чистых металлов существует температурная зависимость ТКЛР, показанная схематически на (рис. 22.43). У инварных сплавов коэффициент линейного расширения в определенном температурном интервале может оставаться неизменным (рис. 22.44). Температура, при которой инварные сплавы теряют свои неизменные свойства, соответствует точке Кюри θК, точке фазового перехода из магнитоупорядоченного состояния (ферромагнитного) в парамагнитное или антиферромагнитное.
Это состояние описывается коэффициентом спонтанной намагниченности η, который возрастает c уменьшением температуры при T ≤ θК (η = 0 при Т > θК).
635

рии, объясняющие поведение инварных сплавов, связаны с этими явлениями.
Теория ферромагнитных взаимодействий. Поскольку инвар-
ная аномалия свойств существует в интервале температур ниже точки Кюри, то в данной теории предполагается, что инварные свойства связаны с ферромагнетизмом, а именно с магнитными превращениями при повышении температуры и магнитообъемными изменениями.
Некоторые экспериментальные данные, связанные с изучением изменения длины инварного образца Fe–Ni, показали:
l Im2, |
(22.33) |
где Im − намагниченность (магнитный момент единицы вещества:
Im = χH).
Таким образом, это показывает, что изменение ТКЛР носит ферромагнитную природу.
Обобщая правило Грюнайзена:
α = b1Cv + b2Cm, (22.34)
где b1, b2 – постоянные; Cv, Cm – парамагнитная и ферромагнитная составляющие теплоемкости в зависимости от температуры, заключают, что для ферромагнитных материалов в области точки Кюри постоянная коэффициента термического расширения b2 < 0, т.е.
α = α0 − , |
(22.35) |
где α0 − нормальный коэффициент линейного расширения, определяемый энергией связи атомов; − ферромагнитная часть коэффициента линейного расширения, основной составляющей которой является объемная магнитострикция парапроцесса.
Исходя из теории ферромагнетизма Зинера, где ферромагнитное упорядочение локализованных спиновых магнитных моментов осуществляется посредством электронов проводимости, а антиферромагнитное упорядочение происходит при перекрытии соседних волновых функций, при пониженной температуре в результате обменного отталкивания при росте параллельных спинов происходит компенсация теплового расширения вещества или, иначе говоря, теплового расширения не происходит.
637
Теория флуктуационной неоднородности. В рамках этой тео-
рии считают, что в инварах существуют субмикрообласти, обладающие неодинаковой магнитной структурой вследствие концентрационной неоднородности состава. Таким областям свойственна фазовая неустойчивость аустенитной решетки, и происходит плавный, а не резкий, рост магнитного момента, что и вызывает появление у инварных сплавов аномальных значений параметра решетки, удельного сопротивления и коэффициента термического расширения.
Теория электронных взаимодействий. В основе данной тео-
рии лежит предположение о том, что вблизи точки Кюри в ГЦК решетке железа существуют два типа электронных конфигураций, которые определяют возможность существования большого и малого атомных объемов. Малый объем γ1 (a = 0,362 нм) характеризуется антиферромагнитным взаимодействием в первой координаци-
онной сфере и обладает малым магнитным моментом ( μ−Fe = 0,5μВ),
а большой объем γ2 имеет ферромагнитное взаимодействие в первой координационной сфере и большой магнитный момент
( μ−Fe = 2,8μВ). При нулевой температуре состояние γ2 считается ос-
новным, поскольку является энергетически выгодным. При повышении температуры тепловое возбуждение электронной конфигурации приводит к переходу к малому магнитному объему. Влияние температуры связано с изменением распределения заселенности уровней атомов, поскольку является пропорциональным exp(− E/kT), где E − величина энергетической «щели» между уровнями. Ширина «щели» (степень вырождения) зависит как от концентрации элементов в сплаве, так и от величины среднего магнитного поля в образце, меняющегося с температурой и приводящего к расщеплению энергетических уровней. При появлении в сплаве индукции, обусловленной ферромагнитным состоянием, за счет зеемановского расщепления (расщепление спектральных линий и уровней атомов в магнитном поле) произойдет изменение ширины «щели».
Такой взаимный переход из одного состояния в другое вблизи точки Кюри приводит к появлению сложных процессов, проте-
638

кающих в противовес тепловому линейному расширению. Все это еще раз подчеркивает, что объемные и магнитные характеристики инварных сплавов сильно взаимосвязаны.
Магнитострикция инварных сплавов. Явление объемной магнитострикции (изменение размеров в магнитном поле) связано с кристаллографической магнитной анизотропией. Наибольшее значение магнитострикции ω имеют инварные сплавы, содержащие
70−72 ат. % Fe (рис. 22.45).
Рис. 22.45. Концентрационная зависимость абсолютной объемной магнитострикции инварных сплавов
при 4,2 и 300 К
Увеличение объема при повышении напряженности магнитного поля ∆ω/∆H связано также с плотностью электронных состояний
N(EF):
∆ω/∆H = CN(EF)∆EF, |
(22.36) |
где С − постоянная.
Природа эффекта магнитострикции заключается в ослаблении энергии связи и увеличении расстояния между ближайшими атомами при повышении напряженности магнитного поля.
Области применения сплавов с заданным значением ТКЛР и особенности их изготовления. Сплавы с минимальным значени-
ем ТКЛР широко используются в устройствах, где необходимо поддерживать стабильность объемных и линейных размеров в определенном интервале температур, а также в измерительных приборах (дилатометрах, профилометрах, магнитострикционных измерителях), где используются геометрические (реперные) точки отсчета. В электротехнике широко используются биметаллы, состоящие из активной (сплавы с высоким значением ТКЛР) и пассивной
639

(сплавы с низким ТКЛР) составляющих. При изменении температуры за счет разности ТКЛР происходит изгиб элемента и замыкание или размыкание контактов. Их используют в тепловых реле и автоматах защиты электрических цепей, а также приборах бытовой техники. Сплавы с заданным значением ТКЛР широко применяются также в электронной технике. Например, в производстве полупроводниковых приборов используют сплав 35НКТ, имеющий согласованное с кремнием значение ТКЛР.
Составы и ТКЛР некоторых сплавов инварного типа приведены в табл. 22.31.
|
|
|
|
|
|
|
|
Таблица 22.31 |
|
|
Составы и ТКЛР некоторых сплавов инварного типа |
||||||
|
|
|
|
|
|
|
|
|
|
Сплав |
|
Содержание |
|
αt, 10–6 |
Температурный |
||
|
|
Название |
элементов, мас. % |
К–1 |
интервал |
|||
Марка |
|
Ni |
|
Co |
Cu |
|
измерения, °С |
|
36Н |
|
Инвар |
35−37 |
|
− |
− |
1,5 |
−60 ÷ +100 |
32НКД |
|
Суперинвар |
31,5−33 |
|
3,2−4,2 |
0,6−0,8 |
1 |
−60 ÷ +100 |
29НК |
|
Ковар |
28,5−29,5 |
17−18 |
− |
4,5−6,5 |
−70 ÷ +420 |
|
33НК |
|
− |
32,5−33,5 |
16,5−17,5 |
− |
6−9 |
−70 ÷ +470 |
|
47НД |
|
Платинит |
46−48 |
|
− |
4,5−5,5 |
9−11 |
−70 ÷ +440 |
Классификацию сплавов проводят в соответствии со значением ТКЛР.
1. Сплавы с минимальной величиной ТКЛР (α < 3,5 10–6 К–1) −
ферромагнитные сплавы 36Н, 36НХ, 35НКТ и другие со следую-
щим составом: (35−37) % Ni, до 1,3 % Mn, до 6 % Со, до 2,8 % Ti,
до 1 % Cu и Cr. Легирующие элементы в сплавах сужают температурный интервал инварности, который находится в пределах 200−300 °С. Существуют и немагнитные сплавы, представляющие собой твердые растворы Cr с добавками Mn, Re, Ru, Os, Ta, La.
2. Сплавы с низким значением ТКЛР (3,5 10-6 ≤ α ≤ 6,5 10–6 К–1).
Среди них выделяют ферромагнитные: 42Н, 44Н, 38НК, 30НКД с содержанием Ni до 44 %, а также немагнитные сплавы на основе циркония с 6−8 % Ti (например, 93ЦТ). Температурный интервал использования этих сплавов −140…+750 °С.
640