Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 5 2008

.pdf
Скачиваний:
1038
Добавлен:
16.08.2013
Размер:
8.51 Mб
Скачать

Так, температурный коэффициент сопротивления dr/ρdT = (10–4– –10–5) 1/K, причем это значение может быть и отрицательным.

По величине электросопротивления АМС можно выделить три группы сплавов: а) простой металл–простой металл (S–S); б) переходный металл–металлоид (ТМ–М); в) переходный металл– переходный металл или переходный металл–РЗМ (ТМ–ТМ).

Сплавы простой металл–простой металл. Классическими представителями этой группы являются сплавы систем: Mg–Zn, Ca–Al, Cu–Sn, Ag–Cu–Ge и др. Характерным признаком этих спла-

вов является

относительно низкое электросопротивление (до

100 мкОм см).

Температурный коэффициент сопротивления

(ТКС) этих сплавов может быть как положительным (электросопротивление растет с ростом температуры), так и отрицательным (электросопротивление падает с ростом температуры).

Сплавы переходный металл–металлоид. Это сплавы переход-

ных металлов Fe, Co, Ni с металлоидами B, C и P, электросопротивление которых изучено достаточно подробно, в том числе и в зависимости от состава, и имеет величины в интервале 100–200 мкОм см. ТКС изменяется от положительных значений на отрицательные, когда сопротивление превышает 150 мкОм см. Это изменение знака ТКС зависит от химического состава, а именно, когда концентрация металлоида составляет 24–25 %. Из АМС этой группы, например состава Ni–Si–B, можно изготавливать прекрасные резисторы.

Сплавы переходный металл–переходный металл. К этой группе относятся сплавы систем Zr–Ni, Zr–Co, Nb–Ni, Pd–Zr и некоторые другие. Электросопротивление этой группы сплавов зависит от состава и, как правило, выше 200 мкОм см, а величина ТКС отрицательна во всем диапазоне аморфизующихся составов.

На рис. 20.33 представлена диаграмма, на которой сведены значения электросопротивления и ТКС аморфных сплавов, входящих в рассмотренные выше три группы сплавов, при температурах выше температуры Дебая. Видно, что при высоком сопротивлении ρ ≥ 200 мкОм см ТКС < 0. Предполагается, что отрицательные ТКС при низком сопротивлении ρ < 100 мкОм см, наблюдаемые в аморфных сплавах и в расплавах двухвалентных металлах (напри-

461

мер, в цинке), обусловлены идентичностью распределения и строения рассеивающих центров электронов.

Изменение электросопротивления АМС может быть разделено на четыре температурные области: Т < Тmin, Тmin < Т < θD,

θD < Т < Тнас и Тнас < Т. Здесь Тmin – температура, при которой проявляется минимум электросопротивления (обычно около 10–20 К);

θD – температура Дебая АМС; Тнас – температура, при которой высокотемпературный ТКС начинает стремиться к насыщению, отклоняясь от закона пропорциональности Т или Т2.

УАМС с высоким сопротивлением, принадлежащих ко второй

итретьей группам, если при высоких температурах Т > Тнас кристаллизация не происходит, электросопротивление имеет тенден-

цию к насыщению, отклоняясь от закона пропорциональности ±Т или ±Т2. У АМС, принадлежащих к первой и второй группам, при

температуре θD < Т < Тнас ТКС изменяется по закону ±Т, а при промежуточных температурах Тmin < Т < θD ТКС практически всех

АМС пропорционален ±Т2. В области низких температур Т < Тmin сопротивление АМС пропорционально lnТ и при снижении температуры повышается, однако скорость такого изменения сильно зависит от состава АМС.

Рис. 20.33. Диаграмма соотношений между температурным коэффициентом сопротивления (ТКС) и электросопротивлением при температуре 300 К

ρ300К различных аморфных сплавов

462

20.12. Химические свойства аморфных сплавов

АМС, полученные быстрой закалкой расплава при высоких скоростях охлаждения, представляют собой пересыщенные гомогенные твердые растворы с равномерным распределением компонентов сплава по объему. В них отсутствуют дефекты, присущие сплавам, охлажденным с обычными скоростями затвердевания, и обусловливаемые диффузионными процессами, а именно в АМС нет границ зерен, ликваций и сегрегаций, скоплений дислокаций и включений второй фазы, других неоднородностей. Следовательно, структура АМС, хотя и является термодинамически неравновесной,

вхимическом отношении близка к идеально однородной, и практически никак не связанна с равновесными диаграммами состояний.

Так как коррозионное взаимодействие кристаллических материалов начинается на тех участках внешней поверхности, где про-

является химическая неоднородность (состава или фазового состояния), АМС должны быть очень устойчивы к коррозии1. Однако компоненты АМС могут качественно по-разному влиять на химические свойства сплава в целом. В частности, весьма важным является наличие в АМС металлоидов, в больших количествах содержащихся

всплавах типа ТМ–М. Одним словом, химические свойства АМС определяются, в первую очередь, их химическим составом.

Коррозия аморфных сплавов на основе железа. Коррозионная стойкость бинарных сплавов железо–металлоид невысокая – хуже, чем у сталей. Однако замена части железа на хром приводит к резкому увеличению коррозионной стойкости АМС в водных растворах, содержащих различные концентрации солей и кислот. Характерным является отсутствие питтинговой коррозии, тогда как в кристаллических Fe-Cr сплавах и коррозионно-стойкой аустенитной стали при наличии металлического блеска на поверхности, в

некоторых локальных метах появляются питтинги, растущие вглубь материала2.

Экспериментально показано, что добавление второго металлического элемента в бинарный сплав ТМ-М обычно увеличивает

1Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. С. 510.

2Там же, с. 447.

463

коррозионную стойкость АМС, даже в водных растворах соляной и серной кислот. Хорошей стойкостью обладают сплавы Fe–Cr–P–C. Наилучшей коррозионной стойкостью среди сплавов железа обла-

дают АМС типа Fe–Cr–Mo–P–C.

Коррозия аморфных сплавов на основе кобальта и никеля.

Положительная роль хрома отмечена и в АМС на основе кобальта и никеля. В никелевых сплавах при концентрации хрома более 7% скорость коррозии при 30 °С в 10 %-ном водном растворе FeCl36H2O падает до нуля. Кстати, такой водный раствор применяется в экспериментах по изучению щелевой коррозии. Особенностью АМС на основе никеля и кобальта является их самопассивация в двунормальном водном растворе H2SO4, отсутствие питтинговой коррозии. При добавлении в АМС на кобальтовой и никелевой основе, кроме хрома, других металлических элементов наблюдаются примерно те же тенденции, что и в случае АМС на основе железа.

Коррозия аморфных сплавов типа металл–металл. АМС это-

го типа также имеют более высокую коррозионную стойкость по сравнению с кристаллическими аналогами. Например, скорость коррозии в однонормальном водном растворе HCl кристаллического сплава Zr–50Cu в два раза выше, чем аморфного. Экспериментально показано, что коррозионная стойкость этой группы АМС тоже зависит от состава сплава и коррозионной стойкости входящих компонентов. Кремний в бинарных АМС существенно повышает коррозионную стойкость и ведет себя как металл. Например, сплавы Fe–Si, Pd–Si в аморфном состоянии имеют существенно более высокую стойкость по сравнению с кристаллическими сплавами, причем стойкость возрастает с увеличением концентрации кремния. В бинарных АМС добавление металлоида, как правило, увеличивает коррозионную стойкость сплава, при этом возрастает склонность к самопассивации1.

Причины высокой коррозионной стойкости АМС. Одним из факторов, определяющих высокую коррозионную стойкость АМС, является их легкая пассивация, обусловленная высоким уровнем свободной энергии атомов, в том числе в поверхностных слоях, и,

1 Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. С. 534.

464

следовательно, высоким сродством к кислороду, возможностью создавать прочные оксидные пассивирующие пленки. Известно, что высокая коррозионная стойкость в различных средах достигается благодаря тому, что металл переходит в пассивное состояние за счет образования прочной оксидной пленки на поверхности. Например, пассивное состояние аустенитных и ферритных сталей связано с повышенной концентрацией хрома в этих поверхностных пленках, представляющих собой гидратированные оксидгидрооксиды хрома и железа. Накопление хрома в пассивирующих пленках, пропорциональное его содержанию в объеме, наблюдается и в хромосодержащих АМС. В отличие от кристаллических сплавов железа, которые переходят в пассивное состояние при концентрации хрома более 13 %, аморфные сплавы, напротив, даже при невысокой концентрации хрома в объеме переходят в пассивное состояние. Например, у АМС типа Fe–3Cr–13P–7C в пассивирующей пленке содержится более 50 % хрома. Следовательно, при введении в АМС даже небольших концентраций хрома концентрация его в поверхностной пленке становится высокой.

Коррозионная стойкость АМС типа ТМ-М сильно зависит от типа основы, т.е. металла и концентрации пассиватора. Быстрое растворение основы (например, железа) в растворе способствует быстрому накоплению в поверхностном слое пассиватора – хрома. Это означает, что в такой сплав можно не вводить большие концентрации хрома. Наоборот, медленное растворение в растворе основы (например, кобальта) потребует для пассивации вводить большие концентрации хрома (до 50 %).

Большое влияние на коррозионную стойкость железных сплавов оказывают металлоиды, причем наиболее сильно замедляет коррозию фосфор, а также фосфор в комбинации с кремнием, углеродом и бором. Металлоидный эффект сводится, во-первых, к ускорению образования пассивирующей пленки благодаря ускорению растворения сплава в начале процесса. Во-вторых, металлоиды изменяют тип аниона в пассивирующей пленке, образуя фосфаты, бораты, силикаты и т.п.

Вторым фактором, определяющим высокую коррозионную стойкость АМС, является их гомогенность, которая определяет

465

однородность и равномерность роста пассивирующей пленки. Отсутствие фазовой неоднородности, сегрегаций, выделений и других мест зарождения коррозии, свойственных кристаллическим материалам, выдвигает аморфные металлические сплавы в класс корро- зионно-стойких материалов, которые не подвержены межкристаллитной и питтинговой коррозии.

20.13. Радиационная стойкость аморфных сплавов

Отсутствие дальнего порядка в аморфных сплавах должно специфически отражаться на результатах воздействия нейтронов и других частиц, на развитии каскадных процессов. В целом, на основе представлений о существовании ближнего порядка в расположении атомов существует мнение о достаточно высокой радиационной стойкости АМС, которая зависит и от состава сплава.

При облучении кристаллических материалов по мере накопления дефектов степень дальнего порядка понижается настолько, что некоторые материалы можно аморфизовать. В АМС изначально существует ближний порядок и определенный свободный объем, поэтому естественно предположить, что облучение не может усилить в них структурный беспорядок.

При облучении АМС нейтроны, как и в кристалле, выбивают атомы и образуют вакансии, но в условиях беспорядочного расположения атомов эти дефекты нестабильны и с большой вероятностью на исходе динамической стадии взаимодействия нейтрона с атомами образуются флуктуации плотности в виде дефектов n- и p-типов (см. п. 20.7.4). Хотя сами элементарные акты выбивания атомов и образования первично-выбитых атомов аналогичны актам

вкристаллах. В АМС невозможно образование скоплений вакансий

имежузельных атомов не только из-за их нестабильности, но и потому, что каскадный процесс в беспорядочной структуре не приводит к образованию ни «обедненной зоны» (скопления вакансий внутри каскада), ни «шубы» (скопления межузельных атомов на периферии каскада), из-за невозможности длинных (как в кристаллах) сфокусированных цепочек столкновений атомов или краудионов. Одним словом, при облучении АМС происходит некоторое

466

перераспределение областей свободного объема и протекание процесса структурной релаксации (см. п. 20.8.1).

Изменение свободного объема и ближнего порядка в расположении атомов при нейтронном облучении АМС можно рассматривать как изменение устойчивости аморфного состояния, которое может проявиться в снижении (увеличении) температуры кристаллизации (особенно при температуре облучения более (0,6–0,7) Тпл), изменении свойств материалов. Так, снижение температуры кристаллизации обнаружено в АМС системы Au–Si при электронном облучении, системы Fe–B при низкотемпературном нейтронном облучении. В то же время температура кристаллизации АМС Fe– B–P, наоборот, увеличилась после нейтронного облучения. Снижение температуры кристаллизации связывают с радиационным ускорением диффузии в АМС и (или) образованием радиационностимулированных сегрегаций компонентов сплава. С другой стороны, в результате облучения быстрыми нейтронами сплава Ni33,3Zr66,7 наблюдали уменьшение в нем диффузии атомов золота. Данный эффект связывают с радиационно-стимулированным увеличением степени химического ближнего порядка, сопровождаемого уменьшением свободного объема и замедлением диффузии.

Методом структурной нейтронографии исследовано влияние облучения быстрыми нейтронами (флюенс 1020 см–2, температура облучения 340 К) на ближний порядок сплава Ti50Ni25Cu25, аморфизованного быстрой закалкой из расплава. Было обнаружено, что аморфная лента, содержащая до облучения небольшую долю кристаллической фазы, после облучения полностью переходит в аморфное состояние, но ближний порядок аморфного сплава не изменяется под действием быстрых нейтронов. Кстати, это свидетельствует о том, что атомная структура АМС оказывает существенное влияние на конечное состояние структуры после внешнего воздействия.

При облучении нейтронами (флюенс 5 1020 см–2) сплава Pd80Si20 было установлено, что предел прочности (в исходном состоянии – 1263 МПа) практически не изменился (1268 МПа), как и предельное удлинение (0,2 %), а модуль нормальной упругости уменьшился с 64 до 56 ГПа, т.е. на 10 %, что вызывает увеличение упругой деформации.

467

Имеются сведения о том, что под действием нейтронного облучения наблюдается ухудшение исходных магнитных свойств АМС на основе железа или кобальта.

Облучение аморфных сплавов Fe75,5Si2B16B Ni3,5Mo3 и Fe78,5Si6B14B Ni1Mo0,5 жестким γ-излучением (источник 60Со, Е = =1,2 МэВ, доза 2–1019 Р) вызвало снижение магнитных свойств, в

частности магнитной проницаемости. Однако имеются сведения о том, что при γ-облучении свежеприготовленных АМС системы Fe– Co–B наблюдается некоторое улучшение магнитных свойств. Все это свидетельствует о сложности радиационно-стимулированных процессов структурной и композиционной релаксации АМС, о зависимости этих процессов от химического состава сплавов и их термической истории. Например, показано, что радиационно вносимые структурные изменения способны релаксировать в процессе последующей выдержки сплава.

Имеются данные о том, что при нейтронном облучении АМС возрастают электросопротивление, намагниченность и коэрцитивная сила (сплав Fe80B20B ). В АМС Fe40Ni40B20B при нейтронном облучении до 26 сна (380 К, Ф = 4 1019 нейтр./см2) установлен факт гелиевого охрупчивания вследствие накопления трансмутационного гелия на боре 10В по (n,α)-реакции.

Безусловным является тот факт, что развитие процессов перестроения структуры под облучением существенно зависит от природы, состава и, следовательно, исходной структуры АМС.

20.14. Применение аморфных сплавов

Аморфные сплавы являются тем классом материалов, которые интенсивно изучаются с точки зрения их практического применения, использования тех свойств, которые присущи только аморфным состояниям. Но аморфное состояние и свойства АМС формируются под действием большого числа различных факторов, основные из которых представлены в табл. 20.6.

При разработке материалов для практического использования необходимо в полной мере учитывать все эти факторы. Кроме этого, необходимо учитывать и технологические особенности произ-

468

водства АМС. Отсюда вытекают две проблемы производственного использования АМС.

Во-первых, при получении АМС быстрой закалкой из расплава необходимо знать, что структурная стабильность сплавов сохраняется в узком интервале температур, как правило, достаточно низких вследствие возможных процессов структурной релаксации, разделения АМС на фазы и кристаллизации, и определяется строением атомов, электронным состоянием, химическим составом.

 

 

Таблица 20.6

Факторы, контролирующие свойства АМС

 

 

 

Свойство АМС

Контролирующие факторы

Внешние

Внутренние

 

Способность к аморфизации

 

 

Термическая стабильность

Температура

Атомные конфигурации

Электросопротивление

Электронные состояния

Давление

Упругость

Химический состав

Скорость охлаждения

 

Структура

Прочность, твердость

Деформация

 

Диффузия

Пластичность, вязкость

Атмосфера

 

Превращения

Магнитная проницаемость

 

Коррозионная стойкость

 

 

Поскольку аморфное состояние является термодинамически неравновесным, оно в большей степени, чем кристаллическое, чувствительно к таким внешним воздействиям, как температура, давление, деформация. Поэтому структурную стабильность можно рассматривать в узких интервалах этих факторов и при условии сохранения аморфного состояния. Можно предположить, что стабильность аморфного состояния сплавов возрастает пропорционально их склонности к аморфизации, и состояние полностью контролируется ковалентной составляющей химической связи атомов и энтропией образования ассоциативных комплексов (см. п. 20.4.3). Другими словами, чем больше ковалентная составляющая междуатомной связи и отрицательная энтропия, тем «устойчивее» будет аморфное состояние.

Обращая внимание на данные табл. 20.2, отметим, что дополнительное легирование ряда систем третьим компонентом способствует образованию более устойчивых тройных и более сложных ас-

469

социативных группировок атомов, например Fe6SiB, AlLaNi, для которых, как правило, свойственны большие отрицательные значения энтропии и, по-видимому, более высокая температурная стабильность аморфного состояния, более высокое сопротивление структурной релаксации и кристаллизации. В целом можно утверждать, что легирование металлических сплавов элементами с малым атомным радиусом (B, P, C, Si) снижает скорость закалки для аморфизации, т.е. повышает стабильность аморфного состояния. Например, стеклообразное состояние бинарных сплавов на оcнове Pd80Si20 дополнительно стабилизируют небольшими (до 10 %) добавками металлов подгруппы Iб таблицы Д.И. Менделеева. В результате легирования сплав Pd77,5Cu6Si16,5 аморфизуется при низкой скорости закалки 102 К/с и, что весьма важно, не кристаллизуется до температуры 686 К, что на 20 К выше, чем у бинарного сплава. Этот тройной сплав относится к разряду массивных АМС (см. п. 20.15). На пути создания стабильных АМС важными являются поиски составов интерметаллических тройных систем с эвтектиками. Перспективны такие системы, в расплавах которых формируются не кристаллические кластеры, т.е. расплавы, склонные к сильному переохлаждению. Температура кристаллизации таких сплавов должна быть максимальной.

Во-вторых, наиболее приемлемыми формами (сортаментом) АМС являются лента, проволока, пленка и порошки, что, с одной стороны, является материалом для изготовления конкретных изделий, т.е. технологически подходящей формой для использования в производстве, например электротехнических устройств. Однако, с другой стороны, при использовании АМС в качестве конструкционного материала потребуется компактирование или сварка, например порошка или ленты, что весьма сложно осуществить без разрушения аморфного состояния.

Наряду с вышеизложенным, перспективы использования АМС определяются способом их получения, т.е. условиями охлаждения, химическим составом, влиянием деформации, атмосферы и термической обработки.

Высокопрочные АМС. Уже 30 лет назад высказывались предположения о возможности использования ленточных АМС в качестве армирующих материалов в сочетании с бетоном, пластиками и

470