Скачиваний:
31
Добавлен:
15.08.2013
Размер:
384.32 Кб
Скачать

15. Photochemistry of amines and amino compounds

733

For the intermolecular interactions between N-methylphthalimide and alkenes, two reactions paths are possible183. The first is the regioand stereocontrolled 2 C2 cycloaddition of the alkene to the C N bond to generate dihydrobenzazepinedione (equation 126), while the second is the electron transfer initiated addition(equation 127).

 

O

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

hν

 

 

 

 

 

(126)

 

 

N

 

Me

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

Me

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

N

 

Me

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

hν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

N

Me +

 

+ •

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Me

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

NMe

Me +

 

 

 

NMe

 

Me

 

 

 

 

 

HO

 

 

 

 

HO

 

 

 

OMe

 

 

 

 

 

 

CH2

Me

 

 

CH2

 

Me

 

 

 

 

 

 

(in MeCN)

 

 

 

(in MeOH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(127)

Intramolecular

(2

C

2)

photocycloaddition

is

possible

for

the

bis-methacryl-

N

-

184

 

 

 

 

 

 

arylimide

(equation 128).

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

O

Me

 

O

 

Me

O

 

 

 

 

 

 

 

 

 

 

hν

 

NAr

+

 

NAr

 

 

 

 

 

 

 

 

NAr

 

 

(128)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

O

Me

 

O

 

Me

O

 

 

 

 

 

 

 

 

 

 

 

(major)

 

 

 

 

 

 

 

734

Tong-Ing Ho and Yuan L. Chow

 

 

Both saturated or unsaturated thioimides and dithioimides

behave like thioketones

in their

photocycloaddition

reaction with

alkenes (equation 129) and

alkynes

(equation 130)185.

 

 

 

 

 

 

 

 

Ph

 

 

S

 

 

S

 

 

 

 

 

 

 

 

Ph

 

Ph

(129)

 

 

+

hν

 

 

NMe

NMe

 

 

 

Ph

 

 

 

 

O

 

 

O

 

 

 

 

 

Ph

 

 

S

 

 

S

 

 

 

 

 

 

 

NMe + PhC CPh

hν

Ph

(130)

 

NMe

 

 

 

 

 

O

 

 

O

 

Dithioamides behave similarly186 (equation 131) but, in the presence of steric hindrance in addition to the thiocarbonyl groups, the photoaddition will become regioselective187 (equation 132). Intramolecular photocycloaddition will lead to the formation of strained polycyclic thietanes188 (equation 133). Hydrogen abstraction by the thioamide functional group is also possible189 (equation 134).

 

Me

 

 

Me

 

S

N

S

S

N

S

 

 

 

+

hν

 

(131)

 

 

 

 

 

 

 

 

 

(86%)

 

S

 

 

 

S

Me

 

Me +

hν

Me

N Me

Me

N

Me

 

 

 

 

 

 

 

 

 

 

(132)

 

S

 

 

S

(50%)

 

15. Photochemistry of amines and amino compounds

735

 

Me

 

 

 

S

 

S

 

 

 

 

Me

 

 

 

 

 

N

hν

 

 

(133)

 

 

N

 

 

S

 

S

 

 

 

 

(80%)

 

 

 

 

 

Ph

 

 

S

 

HS

 

 

 

 

 

 

N

Ph

hν

(134)

 

 

N

 

S

 

O

 

Sulphenamides190 are photochemically active and undergo homolytic cleavage of the S N bond. The products are derived from the sulphurand nitrogen-centred free radicals (equation 135). Oxygen atom transfer from a neighbouring nitro group to the sulphur is also observed191 (equation 136).

NHMe

Me

hν

 

+ PhS

NHMe

PhS N

 

Ph

SPh

 

(135)

 

 

 

+

NHMe +

PhSSPh

Me

 

Me

 

S N

NMe2

O2 S N

NMe2

O2 N

 

H2 N

 

 

hν

 

 

NO2

 

NO2

 

(136)

736

Tong-Ing Ho and Yuan L. Chow

Similarly to the sulphenamides, the photochemistry of isothiazole is initiated by the fission of the weakest S N bond192 (equation 137 and 138).

 

 

 

H

 

 

 

 

 

S

O

 

 

hν

S •

 

 

S

 

 

 

N

O

•N

O

N

 

Ph

 

Ph

 

Ph

 

 

 

 

 

 

(137)

 

 

 

 

S

 

 

 

 

 

O

 

 

 

 

 

N

 

 

 

 

 

Ph

 

 

O

 

 

O

 

 

 

 

hν

 

 

 

N

 

Me

N

Me

 

S

 

 

S •

 

 

 

O

 

O

 

 

 

N

 

NH

 

 

 

S

 

S

 

 

 

H

 

 

Me

 

 

 

Me

(60%)

 

 

 

 

 

 

 

 

 

 

(138)

The

photochemical

deprotection

of sulphonamides to

free amines is

synthetically

useful193. This process is caused by electron transfer from an electron-donating sensitizer such as 1,2-dimethoxybenzene or 1,4-dimethoxybenzene and the presence of reductants like ammonia or hydrazine is also required194 (equation 139).

 

15. Photochemistry of amines and amino compounds

737

MeO

 

 

MeO

 

 

 

 

 

 

N

 

hν

NH

MeO

 

 

SO2

CH3

MeO

 

 

CH2 Pr

 

 

CH2 Ph

 

 

 

 

(100%)

 

 

 

 

(139)

Extrusion of sulphur dioxide by a free radical mechanism can also lead to several ring-closing or ring-opening reactions. For example, intramolecular reaction of the enone 181 to the 3-substituted enone is accompanied by a phenyl shift195 (equation 140). Free radical ring closure may lead to the formation of useful heterocycles such as azetidine196 (equation 141) or carbazole197 (equation 142). In the absence of an external nucleophile such as n-butylamine, photochemical ring closure of sultam 182 affords a pyrrole. Trapping of the N S ruptured intermediate is also possible198 (equation 143).

O

R

 

O

R

 

 

N

 

 

N

 

SO2 Ph

hν

 

SO2

 

 

 

 

 

 

 

 

C6 H6

 

 

 

 

 

 

 

Ph

 

 

(181)

 

 

 

 

 

 

 

O

 

 

O

 

 

 

 

NR

 

 

Ph

(65%)

 

CH2

 

hν

 

SO2

N

N

Me

Me

(140)

NHR

Ph

R = CHMe2

N

Me

(60%)

(141)

738

 

Tong-Ing Ho and Yuan L. Chow

 

SO2

hν

 

 

 

 

 

N

 

 

(142)

 

 

 

Ph

 

N

 

 

H

 

 

 

 

 

 

hν

 

 

SO2

SO2

N

N

 

NPh

 

 

Ph

 

(182)

Ph

 

 

 

 

 

n-C4 H9 NH2

(60%)

CH2 SO2 NH-(C4 H9 )

NPh

(60%)

(143)

Ring expansion of the sulphonamide reaction199 (equation 144) demonstrates the ability of a ruptured sulphur-centred free radical to undergo 1,3-Fries type migration200 (equation 145). Sulphur dioxide extrusion may also provide a synthetic route to ˇ- lactams201 (equation 146).

 

 

 

 

 

Me

 

 

Me

 

 

 

 

 

 

 

O2

 

O2

 

 

 

S

 

S

N

 

 

 

(144)

 

hν

 

 

Me

 

 

 

 

 

 

Me

 

 

 

N

 

 

 

N

H

N

Me

 

 

 

 

 

 

 

 

 

 

Me

SO2 Ph

 

 

 

 

 

RN

NHR

 

 

NHR

 

 

 

SO2 Ph

 

 

(145)

hν

 

 

+

 

 

 

 

 

 

SO2 Ph

15. Photochemistry of amines and amino compounds

739

O2

Ph

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

hν

 

 

 

+

 

 

 

 

(146)

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

N

 

 

 

 

 

 

 

O

 

 

O

O

 

(major)

The amide functionality plays an important role in the physical and chemical properties of proteins and peptides, especially in their ability to be involved in the photoinduced electron transfer process. Polyamides and proteins are known to take part in the biological electron transport mechanism for oxidation reduction and photosynthesis processes. Therefore studies of the photochemistry of proteins or peptides are very important. Irradiation (at 254 nm) of the simplest dipeptide, glycylglycine, in aqueous solution affords carbon dioxide, ammonia and acetamide in relatively high yields and quantum yield (0.44)202 (equation 147). The reaction mechanism is thought to involve an electron transfer process. The isolation of intermediates such as N-hydroxymethylacetamide and N-glycylglycyl-methyl acetamide confirmed the electron-transfer initiated free radical processes203 (equation 148).

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COO

hν

 

 

 

 

 

 

 

 

+ CO2 + NH3

 

H3 N

 

CH2

 

C

 

 

NH

 

CH2

 

 

 

 

 

 

CH3 CONH2

(147)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

hν

+

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

NCH CNHCH C

 

 

CH CNHCH

 

 

 

 

 

 

 

 

 

 

 

 

 

H3 NCH2 CNHCH2 C

 

O

3

2

 

2

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

CNHCH2 OH + CH3

 

CNHCH2 NHCH2

 

CNHCH2 CO2 H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(148)

Terminal

deamination

is also a

major step

in

gamma ray

reactions

 

with

aliphatic

oligopeptides in aqueous solution204. This confirms that the amide group tends to react with the solvated electron. Ring opening of the pyrrolidine also occurs in the photolysis of pyrrolylglycine which is without a primary free amino group205 (equation 149).

 

 

 

 

O

 

 

O

 

 

+

H

 

 

hν

 

 

 

 

 

 

 

N

C

 

 

H2 N(CH2 )4 CNHCH2 OH + CO2 (149)

 

 

N

C

C

O

H

O

H2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As for the photophysical aspects for the bio-mimic photoinduced electron transfer systems, studies on amides206 and amino acid assemblies207 have recently begun to be popular.

740

Tong-Ing Ho and Yuan L. Chow

VII. REFERENCES

1.Y. L. Chow, W. C. Danen, S. F. Nelsen and D. Rosenblatt, Chem. Res., 78, 243 (1978).

2.F. D. Lewis, Acc. Chem. Res., 12, 152 (1979).

3.R. S. Davidson, in Molecular Association (Ed. R. Foster), Academic Press, London, 1975.

4.A. Lablache-Combier, Bull. Soc. Chem. Fr., 12, 4791 (1972).

5.(a) F. D. Lewis, A. Abini, A. Lablache-Combier, P. S. Mariano and N. J. Pienta, in Photoinduced Electron Transfer (Eds. M. A. Fox and M. Chanon), Part C, Elsevier, New York, 1988.

(b)F. D. Lewis, in Advances in Electron Transfer Chemistry.

6.A recent review on the photochemistry of aliphatic and aromatic amines is primarily focussed on the physical and spectroscopic aspects: A. N. Malkin and V. A. Kuz’min, Russ. Chem. Rev., 54, 1041 (1985).

7.D. Bryce-Smith, M. T. Clark, A. Gilbert, G. Klunkin and C. Manning, J. Chem. Soc., Chem. Commun., 916 (1971)

8.F. D. Lewis and T. I. Ho, J. Am. Chem. Soc., 99, 7991 (1977).

9.J. A. Barltrop and R. J. Owers, Chem. Commun., 1462 (1970).

10.R. S. Davidson, Chem. Commun., 1450 (1969).

11.J. A. Barltrop, N. J. Bunce and A. Thomson, J. Chem. Soc. (C), 1142 (1967).

12.M. Ohashi, K. Miyaki and K. Tsujimoto, Bull. Chem. Soc. Jpn., 53, 1683 (1980).

13.F. D. Lewis, Acc. Chem. Res., 19, 401 (1986).

14.T. I. Ho, K. Nozaki, A. Naito, S. Okazaki and H. Hanato, J. Chem. Soc., Chem. Commun., 206 (1989).

15.C. R. Lin, C. N. Wang and T. I. Ho, J. Org. Chem., 56, 5025 (1991).

16.U. C. Yoon and P. S. Mariano, Acc. Chem. Res., 25, 233 (1992).

17.F. D. Lewis, Adv. Photochem., 13, 165 (1986).

18.F. D. Lewis and J. T. Simpson, J. Phys. Chem., 83, 2015 (1979).

19.W. Hub, S. Schneider, F. Dorr, J. D. Oxman and F. D. Lewis, J. Am. Chem. Soc., 106, 708 (1984).

20.J. C. Mai, Y. C. Lin and T. I. Ho, J. Photochem. Photobiol., A54, 299 (1990).

21.F. D. Lewis, T. I. Ho and J. T. Simpson, J. Am. Chem. Soc., 104, 1924 (1982).

22.F. D. Lewis, T. I. Ho and J. T. Simpson, J. Org. Chem., 46, 1077 (1981).

23.F. D. Lewis and T. I. Ho, J. Am. Chem. Soc., 102, 1751 (1980).

24. F. D. Lewis, D. M. Bassani, E. L. Burch, B. E. Cohen, J. A. Engleman, G. D. Reddy,

S. Schneider, W. Jaeger, P. Gedeck and M. Gahr, J. Am. Chem. Soc., 117, 660 (1995).

25.R. C. Cookson, S. M. de B. Costa and J. Hudec, Chem. Commun., 753 (1969).

26.T. Susumu, S. Hida, S. Takamuku and H. Sakurai, Nippon Kagaku Kaishi, 152 (1984).

27.F. D. Lewis, G. D. Reddy and D. M. Bassani, J. Photochem. Photobiol. A: Chem., 65, 205 (1992).

28.F. D. Lewis, D. M. Bassani and G. D. Reddy, Pure Appl. Chem., 64, 1271 (1992).

29.H. Aoyama, Y. Arata and Y. Omote, J. Chem. Soc., Chem. Commun., 1381 (1985).

30.F. D. Lewis, G. D. Reddy and D. M. Bassani, J. Am. Chem. Soc., 115, 6468 (1993).

31.F. D. Lewis, G. D. Reddy, D. M. Bassani, S. Schneider and M. Gahr, J. Am. Chem. Soc., 116 597 (1994).

32.R. C. Cookson, J. Hudec and N. A. Mitza, Chem. Commun., 824 (1967).

33.N. J. Pienta and J. E. McKimmey, J. Am. Chem. Soc., 104, 5501 (1982).

34.D. W. Smith and N. J. Pienta, Tetrahedron Lett., 25, 915 (1984).

35.D. I. Schuster, R. Bonneau, D. A. Dunn, J. M. Rao and J. Joussot-Dubien, J. Am. Chem. Soc., 106, 2706 (1984).

36.D. A. Dunn, D. I. Schuster and R. Bonneau, J. Am. Chem. Soc., 107, 2802 (1985).

37.D. I. Schuster and A. M. Insogna, J. Org. Chem., 56, 1879 (1991).

38.D. Weir, J. C. Scaicno and D. I. Schuster, Can. J. Chem., 66, 2595 (1988).

39.S. G. Cohen, A. Parola and G. H. Parsons, Chem. Rev., 73, 141 (1973).

40.P. J. Wagner, Top. Curr. Chem., 66, 1 (1976).

41.T. I. Ho, Y. L. Chow and H. C. Lee, Proc. Natl. Sci. Counc., Repub. China (A) 10, 212 (1986).

42.M. Zhang and P. S. Mariano, J. Org. Chem., 56, 1655 (1991).

43.U. C. Yoon, J. U. Kim, E. Hasegawa and P. S. Mariano, J. Am. Chem. Soc., 109, 4421 (1987).

44.E. Hasegawa, W. Xu. P. S. Mariano, U. C. Yoon and J. U. Kim, J. Am. Chem. Soc., 110, 8099 (1988).

15. Photochemistry of amines and amino compounds

741

45.W. Xu, Y. T. Jeon, E. Hasegawa, U. C. Yoon and P. S. Mariano, J. Am. Chem. Soc., 111, 413 (1989).

46.W. Xu, X. M. Zhang and P. S. Mariano, J. Am. Chem. Soc., 113, 8863 (1991).

47.W. Xu and P. S. Mariano, J. Am. Chem. Soc., 113, 1431 (1991).

48.Y. T. Jeon, C. P. Lee and P. S. Mariano, J. Am. Chem. Soc., 113, 8847 (1991).

49.S. Murata, M. Miura and M. Nomura, J. Chem. Soc., Chem. Commun., 116 (1989).

50.J. M. Kim, I. S. Cho and P. S. Mariano, J. Org. Chem., 56, 4943 (1991).

51.I. Kawenoki, B. Keita, J. Kossanyi and L. Nadjo, Bull. Soc. Chem. Fr., 104 (1982).

52.M. Goez and I. Sartorius, J. Am. Chem. Soc., 115, 11123 (1993).

53.A. Gilbert, S. Krestonosich and D. L. Westover, J. Chem. Soc., Perkin. Trans. 1, 295 (1981).

54.K. Chandrasekaran and D. G. Whitten, J. Am. Chem. Soc., 103, 7270 (1981).

55.D. Dopp and J. Heufer, Tetrahedron Lett., 23, 1553 (1982).

56.R. A. Beecroft, R. S. Davidson, D. Goodwin and J. E. Pratt, Pure Appl. Chem., 54, 1605 (1982).

57.M. Van der Auweraer, Z. R. Grabowski and W. Rettig, J. Phys. Chem., 95, 2083 (1991).

58.A. M. Swinnen, M. Van der Auweraer, F. C. De Schryver, N. Kakitani, T. Okada and N. Mataga,

J. Am. Chem. Soc., 109, 321 (1987).

59.M. Van der Auweraer, A. Gilbert and F. C. De Schryver, J. Am. Chem. Soc., 102, 4001 (1980).

60.Z. R. Grabowski, Pure Appl. Chem., 65, 1751 (1993).

61.T. Scherer, R. J. Willemse and J. W. Verhoeven, Recl. Trav. Chim. Pays-Bas, 110, 95 (1991).

62.K. Hara, H. Suzuki and W. Rettig, Chem. Phys. Lett., 145, 269 (1988).

63.W. Rettig and W. Majenz, Chem. Phys. Lett., 154, 335 (1989).

64.J. W. Verhoeven, Pure Appl. Chem., 62, 1585 (1990).

65.R. M. Hermant, N. A. C. Bakker, T. Scherer, B. Krijnen and J. W. Verhoeven, J. Am. Chem. Soc., 112, 1214 (1990).

66.A. Nag, T. Chakrabarty and K. Bhattacharyya, J. Phys. Chem., 94, 4023 (1990).

67.H. Shou, J. C. Alfanio, N. A. Van Dantzig, D. H. Levy and N. C. Yang, J. Chem. Phys., 95, 711 (1991).

68.Y. Hatano, M. Yamamoto and Y. Nishijima, J. Phys. Chem., 82, 367 (1978).

69.M. Migita, M. Kawai, N. Mataga, Y. Sakata and S. Misumi, Chem. Phys. Lett., 53, 67 (1978).

70.J. H. Borkent, A. W. J. De Jong, J. W. Verhoeven and Th. J. De Boer, Chem. Phys. Lett., 57, 530 (1978).

71.F. C. De Schryver, N. Boens and J. Put, Adv. Photochem., 10, 359 (1977).

72.E. A. Chandross and H. T. Toomas, Chem. Phys. Lett., 9, 393 (1971).

73.R. S. Davidson and K. R. Tretheway, J. Chem. Soc., Chem. Commun., 827 (1976).

74.R. S. Davidson, R. Bonneau, J. Joussot-Dubien and K. J. Toyne, Chem. Phys. Lett., 63, 269 (1979).

75.Y. Wang, M. K. Crawford and K. B. Eisenthal, J. Phys. Chem., 84, 2696 (1980).

76.P. Pasman, F. Rob and J. W. Verhoeven, J. Am. Chem. Soc., 104, 5127 (1982).

77. A. M. Swinnen, M. Van der Auweraer, F. C. De Schryver, C. Windels, R. Goedeweeck,

A.Vannerem and F. Meeus, Chem. Phys. Lett., 95, 467 (1983).

78.G. F. Mes, B. de Jong, H. J. Van Ramesdonk, J. W. Verhoeven, J. M. Warman, M. P. de Hass and L. E. W. Horsman-van den Dool, J. Am. Chem. Soc., 106, 6524 (1984).

79.B. Wegewijs, R. M. Hermant, J. W. Verhoeven, A. G. M. Kunst and R. P. H. Rettschnick,

Chem. Phys. Lett., 140, 587 (1987).

80.B. Raju. B and T. S. Varadarajan, J. Phys. Chem., 98, 8903 (1994).

81.F. D. Lewis and B. E. Cohen, J. Phys. Chem., 98, 10591 (1994).

82.P. Wang and S. Wu, J. Photochem. Photobiol. A: Chem., 76, 27 (1993).

83.S. Schnieder, H. Rehaber, M. Gahr and W. Schusslbauer, J. Photochem. Photobiol. A: Chem., 82, 129 (1994).

84.U. Leinhos, W. Kuhnle and K. A. Zachariasse, J. Phys. Chem., 95, 2013 (1991).

85.W. Schuddeboom, S. A. Jonker, J. M. Warman, U. Leinhos, W. Kuhnle and K. A. Zachariasse,

J.Phys. Chem., 96, 10809 (1992).

86.F. C. De Schryver, D. Declercq, S. Depaemelaere, E. Hermans, A. Onkelinx, J. W. Verhoeven and J. Gelan, J. Photochem. Photobiol. A: Chem., 82, 171 (1994).

87.R. Lapouyade, K. Czeschka, W. Majenz, W. Rettig, E. Gilabert and C. Rulliere, J. Phys. Chem., 96, 9643 (1992).

88.S. Frey-Forgues, M. T. Le Bris, J. C. Mialocq, J. Pouget, W. Reetig and B. Valeur, J. Phys. Chem., 96, 701 (1992).

742

Tong-Ing Ho and Yuan L. Chow

89.A. Declemy and C. Rulliere, Chem. Phys. Lett., 146, 1 (1988).

90.D. M. Shin and D. G. Whitten, J. Phys. Chem., 92, 2945 (1988).

91.M. Kawanisi and K. Matsunaga, J. Chem. Soc., Chem. Commun., 313 (1972).

92.M. Bellas, D. Bryce-Smith and A. Gilbert, Chem. Commun., 862 (1967).

93.P. Grandclaudon and A. Lablance-Combier, Chem. Commun., 892 (1971).

94.T. Okada, I. Karaki and M. Matage, J. Am. Chem. Soc., 104, 7191 (1982).

95.F. D. Lewis, B. E. Zebrowski and P. E. Correa, J. Am. Chem. Soc., 106, 187 (1984).

96.F. D. Lewis and P. E. Correa, J. Am. Chem. Soc., 106, 194 (1984).

97.F. D. Lewis and G. D. Reddy, Tetrahedron Lett., 33, 4294 (1992).

98. N. C. Yang, D. W. Minsek, D. C. Johnson, J. R. Larson, J. W. Petrich, R. Gerald, III and

M.R. Wasielewski, Tetrahedron, 45, 4669 (1989).

99.F. D. Lewis, G. D. Reddy, S. Schneider and M. Gahr, J. Am. Chem. Soc., 113, 3498 (1991).

100.F. D. Lewis, D, M. Bassani and G. D. Reddy, J. Org. Chem., 58, 6390 (1993).

101.A. Sugimoto, R. Sumida, N. Tamai, H. Inoue and Y. Otsuji, Bull Chem. Soc. Jpn., 54, 3500 (1981).

102.H. Shizuka, M. Nakamura and T. Morita, J. Phys. Chem., 83, 2019 (1979).

103.M. Yasuda, J. Kubo and K. Shima, Heterocycles, 31, 1007 (1990).

104.T. Yamashita, K. Shiomori, M. Yasuda and K. Shima, Bull. Chem. Soc. Jpn., 64, 366 (1991).

105.M. Yasuda, T. Isami, J. Kudo, M. Mizutani, T. Yamashita and K. Shima, J. Org. Chem., 57, 1351 (1992).

106.M. Yasuda, T. Yamashita, K. Shima and C. Pac., J. Org. Chem., 52, 753 (1987).

107.F. D. Lewis, in Photoinduced electron Transfer (Eds. M. Chanon and M. A. Fox), Elsevier, Amsterdam, 1988.

108.A. J. Maroulis, Y. Shigemitsu and D. R. Arnold, J. Am. Chem. Soc., 100, 535 (1978).

109.F. D. Lewis, G. D. Redey and B. E. Cohen, Tetrahedron Lett., 35, 535 (1994).

110.M. A. Leoni, G. F. Bettinetti, G. Minoli and A. Albini, J. Org. Chem., 45, 2331 (1980).

111.A. D. Gudmundsdottir and J. R. Scheffer, Tetrahedron Lett., 31, 6807 (1990).

112.D. G. Anderson and G. Wettermark, J. Am. Chem. Soc., 87, 1433 (1965).

113.E. V. Blackburn and C. J. Timmons, Quart. Rev., 23, 482 (1969).

114.T. H. Koch and K. H. Howard, J. Am. Chem. Soc., 97, 7288 (1975).

115.K. R. Huffmann, M. Loy and E. F. Ullman, J. Am. Chem. Soc., 87, 5417 (1965).

116.(a) A. Padwa, Chem. Rev., 77, 37 (1977).

(b)A. C. Pratt, Chem. Soc. Rev., 6, 63 (1977).

117.(a) P. S. Mariano, Org. Photochem., 9, 1 (1987).

(b)P. S. Mariano, Acc. Chem. Rev., 16, 130 (1983).

118.W. Horspool and D. Armesto, ‘Organic Photochemistry’, Ellis Horwood, Chichester; Prentice Hall, New York, 1992.

119.P. S. Mariano, J. L. Stavinoha, G. Pepe and E. F. Meyers, J. Am. Chem. Soc., 100, 7114 (1978).

120.P. S. Mariano and A. Leone, Tetrahedron Lett., 4581 (1980).

121.P. S. Mariano, J. L. Stavinoha and R. Swanson, J. Am. Chem. Soc., 99, 6781 (1977).

122.J. L. Stavinoha, P. S. Mariano, A. Leone-Bay, R. Swanson and C. Bracken, J. Am. Chem. Soc., 103, 3148 (1981).

123.K. Ohga and P. S. Mariano, J. Am. Chem. Soc., 104, 617 (1982).

124.T. Tiner-Harding, J. W. Ullrich, F. T. Chiu, S. F. Chem and P. S. Mariano, J. Org. Chem., 47, 3360 (1982).

125.S. -F. Chen, J. W. Ullrich and P. S. Mariano, J. Am. Chem. Soc., 105, 6160 (1983).

126.I. S. Cho, C. L. Tu and P. S. Mariano, J. Am. Chem. Soc., 112, 3594 (1990).

127.K. Ohga, U. C. Yoon and P. S. Mariano, J. Org. Chem., 49, 213 (1984).

128.G. Dai-Ho and P. S. Mariano, J. Org. Chem., 53, 5113 (1988).

129.D. Armesto, J. A. F. Martin, R. Perez-Ossorio and W. H. Horspool, Tetrahedron Lett., 23, 2149 (1982).

130.(a) A. C. Pratt and Q. Abdul-Majid, J. Chem. Soc., Perkin Trans. 1, 359 (1987).

(b)A. C. Pratt and Q. Abdul-Majid, J. Chem. Soc., Perkin Trans. 1, 1691 (1986).

131.M. Nitta, I. Kashara and T. K. Kobayashi, Bull. Chem. Soc. Jpn., 54, 1275 (1981).

132.D. Armesto, F. Langa, J. A. F. Martin, R. Perez-Ossorio and W. M. Horspool, J. Chem. Soc., Perkin Trans. 1, 743 (1987).

133.D. Armesto, W. M. Horspool, J. A. F. Martin and R. Perez-Ossorio, J. Chem. Res. (S), 46 (1986).

134.D. Armesto, W. M. Horspool and F. Langa, J. Chem. Soc., Chem. Commun., 1874 (1987).

Соседние файлы в папке Patai S., Rappoport Z. 1996 The chemistry of functional groups. The chemistry of amino, nitroso, nitro and related groups. Part 2