Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
прокопец все.docx
Скачиваний:
140
Добавлен:
19.05.2015
Размер:
508.56 Кб
Скачать

Нормирование точности метрической резьбы.

Взаимозаменяемость резьбы обеспечивается ограничением предельных контуров резьбы сопрягаемых деталей на всей длине свинчивания (длина свинчивания или высота гайки – это длина соприкосновения винтовых поверхностей болта и гайки в осевом направлении).

Система допусков и посадов метрических резьб

Внутренние и наружные резьбы соединяются по боковым сторонам профиля. Возможность контакта по вершинам и впадинам резьбы исключается соответствующим  расположением полей допусков по  и . В зависимости от  характера сопряжения по боковым сторонам профиля (т.е. по среднему  диаметру) различают резьбы со скользящей  посадкой, с зазором, натягом и с переходными  посадками.

Резьбовые соединения, их достоинства и недостатки. Основные детали резьбовых соединений: винт, гайка, шпилька, стопорные устройства.

Резьбовые соединения – соединения деталей с помощью резьбы. В качестве резьбовых элементов используют болты, винты и шпильки.

Достоинства: 1) обеспечивает возможность многократной сборки – разборки 2) при незначительной силе на ключе, создается значительная сила затяжки 3) возможна сборка при различном взаимном расположении деталей 4) простота и возможность точного изготовления.

Недостатки: 1) относительно большие размеры 2) масса фланцев для размещения гаек и головок винта.

Основным пре­имуществом болтового соединения (рис. 14.1, а) является то, что оно не требует выполнения резьбы в соединяемых деталях. Применяют болтовые соединения при относительно неболь­шой толщине соединяемых деталей и когда материал детали не обеспечивает достаточной прочности резьбы. Винты (рис. 14.1, б) применяют, когда корпусная деталь большой толщины не позволяет выполнить сквозное отверстие для установки болта, или при жестких ограничениях конструк­ции по весовым параметрам. Шпильки (рис. 14.1, в) применя­ют вместо винтов, если прочность материала детали с резьбой недостаточна (сплавы на основе алюминия), а также при час­тых сборках и разборках соединений. В этом случае шпилька завинчивается в деталь один раз на все время работы соедине­ния, а при сборках и разборках работает более прочная резьба на участке свинчивания с гайкой. Формы головок винта (бол­та) и гайки могут быть различными в зависимости от условий конструкции, сборки и т. д.

28. Зубчатая передача - это механизм, который с помощью зубчатого зацепления передаёт или преобразует движение с изменением угловых скоростей и моментов. 

Зубчатая пара состоит из шестерни и колеса. В большинстве случаев шестерня является ведущим элементом зубчатой пары, а колесо - ведомым, хотя встречается и обратное соотношение. Обычно шестерня имеет меньший диаметр.

Цилиндрические зубчатые колёса

Как видно из таблицы прямозубыми могут быть как цилиндрические, так и конические колёса. 

Прямозубые колёса применяют в следующих случаях:

1) при невысоких и средних окружных скоростях, 

2) при большой твёрдости зубьев (когда динамические нагрузки от неточностей изготовления невелики по сравнению с полезными), 

3) также применяются в открытых и планетарных передачах. 

а) прямозубое колесо,

б) косозубое колесо,

в) шевронное колесо

Рисунок 1

Хотя максимальные окружные скорости прямозубых колёс могут доходить до 15 м/с, наиболее часто применяются скорости до 5 м/с. Одним из достоинств прямозубой передачи является отсутствие осевых усилий.

Косозубая передача используется обычно в следующих случаях:

1) если нельзя подобрать цилиндрическую прямозубую пару со стандартным модулем при заданных межосевом расстоянии и передаточном отношении;

2) в случае необходимости иметь малое колесо с небольшим числом зубьев при одновременно высоких требованиях к плавности и равномерности передачи;

3) при повышенных окружных скоростях колёс (при средних и высоких скоростях) и требованиях в отношении бесшумности передачи;

4) при больших передаточных отношениях

Косозубые и шевронные зубчатые колёса в зависимости от качества изготовления могут применяться при окружных скоростях до 30 м/с. Косозубые передачи иногда используются при малых окружных скоростях. Это объясняется некоторыми их преимуществами перед прямозубыми: одновременно в зацеплении находится несколько зубьев, передача вращения происходит более плавно, уменьшаются динамические нагрузки, возникающие вследствие неточности изготовления колёс. Кроме того, изготовление косозубых колёс не требует специального оборудования и оснастки. Одним из недостатков косозубых колёс является наличие осевого усилия, что вызывает необходимость усиления подшипниковых узлов и вала. Поэтому при больших осевых усилиях при передачи больших мощностей рационально применение более сложных шевронных передач, в которых осевые усилия скомпенсированы.

Рисунок 2

 Рисунок 3

Цилиндрические передачи с косозубыми (винтовыми) колёсами могут быть как с параллельными осями колёс, так и с пересекающимися.

Вариант с пересекающимися осями колёс возможен в следующих случаях.

1. Оси колёс скрещиваются под углом 90º. В этом случае угол наклона зубьев ведущего колеса больше, чем у ведомого.

2. Оси скрещиваются под углом не равным 90º.  В этом случае угол наклона зубьев ведущего колеса больше, чем угол наклона зубьев ведомого колеса. Возможны три сочетания колёс:

а) ведущее колесо винтовое, ведомое - прямозубое;

б) зубья обоих колес винтовые одного направления;

в) зубья обоих колес винтовые разного направления.

Рисунок 4

 

Цилиндрические передачи с внутренним зацеплением

По сравнению с передачами наружного зацепления цилиндрические передачи с внутренним зацеплением имеют во много раз меньшее относительное скольжение рабочих поверхностей зубьев, меньшее удельное давление между рабочими поверхностями зубьев и меньшие размеры при сравнительно большом передаточном отношении и малом межцентровом расстоянии. Однако они не получили большого распространения, поскольку они более сложны в изготовлении и при их применении не обеспечивается достаточная жесткость валов вследствие консольного расположения колеса и шестерни.

Корригирование цилиндрических зубчатых колёс

Цилиндрические зубчатые колёса могут быть как со смещением исходного контура, так и без смещения исходного контура. Эвольвентное зубчатое зацепление обладает ценным свойством: допускает успешную работу передачи и при изменении расстояния между центрами. Возможно три положения шестерни по отношению к колесу: нормальное, сближенное и раздвинутое. Таким образом, эвольвентное зацепление допускает использование для образования профиля зубьев различных участков эвольвенты, что даёт возможность осуществлять сдвиги профиля как при неизменном расстоянии между центрами (высотная коррекция), так и при раздвинутых или сближенных центрах (угловая коррекция). 

 Смещение исходного контура является одним из видов модификации профилей зубьев (корригирования). Преимущества эвольвентного зацепления при использовании корригирования:

- уменьшается минимально допустимое число зубьев (увеличивается модуль при том же диаметре шестерни);

- повышается прочность (особенно изгибная, так как зуб утолщается у основания);

- повышается износостойкость;

- повышается плавность эвольвентных передач.

К недостаткам коррегирования можно отнести уменьшение коэффициента перекрытия.

Конические зубчатые колёса

Прямозубые конические колёса применяют при невысоких окружных скоростях (до 2...3 м/с, допустимо до 8 м/с). При более высоких скоростях целесообразно применять колёса с круговыми зубьями, как обеспечивающие более плавное зацепление, меньший шум, большую несущую способность и более технологичные. Прямозубые конические передачи обеспечивают передаточное отношение до 3.

При окружных скоростях, больших 3 м/с, в конических редукторах применяют зубчатые передачи с косыми иликриволинейными зубьями, которые благодаря постепенному входу в зацепление и меньшим изменением величины деформации зубьев в процессе зацепления работают с меньшим шумом и меньшими динамическими нагрузками. Кроме того, зубчатые колёса с косыми или криволинейными зубьями лучше работают на изгиб, чем прямозубые. Однако для полного контакта зубьев этих передач требуется прилегание зубьев не только по их ширине, но и по высоте, что повышает требования к изготовлению косозубых передач и колёс с криволинейными зубьями. Благодаря своим преимуществам такие передачи могут применяться при передаточных отношениях до 5 и даже выше.

 

Рисунок 5

а) с прямыми зубьями,     б) с косыми зубьями,

в) с криволинейными зубьями,    г) коническая гипоидная передача

Рисунок 6 - Основные элементы зубьев конических колёс

Конические зубчатые колёса с косыми зубьями могут работать с окружной скоростью до 12 м/с, а колёса с криволинейными зубьями - до 35-40 м/с. Наибольшее распространение получили передачи с криволинейными зубьями, нарезанными по спирали, эвольвенте (паллоидные) или окружности (круговые).Конические колёса с криволинейными зубьями могут иметь различное направление спирали. Зубчатое колесо называется правоспиральным, если со стороны вершины конуса зубья наклонены наружу в сторону движения часовой стрелки, в противном случае колесо называется левоспиральным.

Корригирование конических зубчатых колёс

Применяют в основном высотную коррекцию (корригирование) конических колёс. Также для конических колёс применяется тангенциальная коррекция, заключающаяся в утолщении зуба шестерни и утонении зуба колеса. Тангенциальная коррекция конических колёс не требует специального инструмента. Для цилиндрических колёс тангенциальную коррекцию не применяют, так как для она требует специального инструмента. На практике для конических колёс часто применяют высотную коррекцию в сочетании с тангенциальной.

Зубья конических колёс по признаку изменения размеров сечений по длине выполняют трех форм:

Рисунок 7

1.Нормально понижающие зубья. Вершины делительного и внутреннего конусов совпадают. Эту форму применяют для конических передач с прямыми и тангенциальными зубьями, а также ограниченно для передач с круговыми зубьями при mn>2 и Z = 20...100.

Рисунок 8

2. Вершина внутреннего конуса располагается так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу растёт с увеличением расстояния до вершины. Эта форма позволяет обрабатывать одним инструментом сразу обе поверхности зубьев колеса. Поэтому она является основой для колес с круговыми зубьями.

Рисунок 9

3. Равновысокие зубья.Образующие делительного и внутреннего конуса параллельны. Эту форму применяют для круговых зубьев при Z>40, в частности при средних конусных расстояниях 75-750 мм.

 Кинематическая точность зубчатых колес и передач, ее нормирование. Пример обозначения точности зубчатого колеса для отсчетной передачи.

Кинематическая погрешность передачи - разность между действительным и номинальным углами поворота ведомого зубчатого колеса передачи.

 

Погрешность передаточного отношения  Fior = ( 2 действ -  2 номr [мкм] ;

 2 ном = 1 * (Z/ Z2)

 

Кинематическая погрешность колеса – разность между действительным и номинальным углами поворота зубчатого колеса на его рабочей оси.

Колеса 1 и 3 находятся в однопрофильном зацеплении с ведущим колесом 2. Возможный поворот колеса 3 относительно 1 фиксируется. Вращение от 2 передается 1 и 3 колесами. Они будут вращаться синхронно, если 3 выполнено так же точно, как и 1, но вследствие погрешностей 3 будет проворачиваться относительно 1.

Наибольшая алгебраическая разность отклонений действительных угловых положений колеса 3 относительно номинального положения за оборот соответствует значению колебаний кинематической погрешности колеса F’ir и ограничивается допуском F.

Пример обозначения точности зубчатого колеса для отсчетных передач.

.

6-7-7 C, 5-6-6 С