
- •Электромагнитная индукция (эми)
- •Электромагнитные колебания
- •Волновая оптика
- •Основы специальной теории относительности (сто)
- •1.2. Взаимодействие проводников с током
- •1.3. Индукция магнитного поля
- •1.4. Сила Лоренца. Правило левой руки для определения направления силы Лоренца
- •1.5. Сила Ампера. Правило левой руки для определения направления силы Ампера
- •1.6. Магнитный поток
- •2. Электромагнитная индукция
- •2.1. Явление электромагнитной индукции
- •2.2. Закон электромагнитной индукции
- •2.3. Явление самоиндукции
- •3. Электромагнитные колебания
- •3.1. Колебательный контур ( - контур). Свободные электромагнитные колебания в контуре без сопротивления.
- •3.2. Вынужденные электромагнитные колебания. Переменный ток
- •4. Основы специальной теории относительности
- •5. Геометрическая оптика
- •5.1. Закон прямолинейного распространения света
- •5.2. Законы отражения света
- •5.4. Явление полного внутреннего отражения от границы двух сред
- •5.5. Линзы. Построение изображения в линзе
- •5.6. Формула тонкой линзы. Увеличение изображения в линзе
- •5.7. Оптические приборы. Системы линз
- •Примеры использования линз
- •6. Волновая оптика
- •6.1. Электромагнитные волны (эмв)
- •6.2. Интерференция света
- •6.3. Дифракция света
- •Принцип Гюйгенса-Френеля
- •Дифракционная решётка
- •7. Квантовая оптика
- •7.1. Внешний фотоэффект. Фотоны
- •7.2. Атомная физика
- •Постулаты Бора
- •Спектры излучения и поглощения
- •8. Элементы ядерной физики
- •8.1. Состав и характеристики атомного ядра
- •Ядерные силы. Модель ядра
- •8.2. Радиоактивность
- •8.3. Виды радиоактивных излучений
- •8.4. Ядерные реакции деления
- •8.5. Ядерные реакции синтеза
- •Образцы решения типовых задач
- •Задача № 3
- •Решение
- •Задача № 4
- •Решение
- •Задача № 5
- •Решение
- •Задача № 6
- •Решение
- •Задача № 7
- •Решение
- •Задача № 8
- •Решение
- •Задача № 9
- •Решение
- •Задача № 10
- •Задача № 14
- •Решение
- •Задача № 15
- •Решение
- •Задача № 16
- •Задача № 26
- •Задача № 27
- •Решение
- •Рекомендуемая литература
- •Оглавление
- •1.6. Магнитный поток……………………………………………………………..…..15
- •2.2. Закон электромагнитной индукции…………………………………..…….18
- •2.3. Явление самоиндукции ………………………………………..……………...19
- •5.4. Явление полного внутреннего отражения от границы двух сред…………………………………………………………………………………………….32
- •5.5. Линзы. Построение изображения в линзе………………………………33
- •5.7. Оптические приборы. Системы линз………………………………………38
- •Максимов с.М., Пруцакова н.В., Ковалева в.С., Мардасова и.В.
- •Часть 2
1.4. Сила Лоренца. Правило левой руки для определения направления силы Лоренца
Силу,
действующую на движущуюся заряженную
частицу со стороны магнитного поля,
называют силой
Лоренца.
Опытным путём установлено, что сила,
действующая в магнитном поле на заряд
,
перпендикулярна векторам
и
,
а ее модуль определяется формулой:
,
где
– угол между векторами
и
.
Направление
силы Лоренца
определяется
правилом
левой руки
(рис. 6):
если
вытянутые пальцы расположить по
направлению скорости положительного
заряда, а силовые линии магнитного поля
будут входить в ладонь, то отогнутый
большой палец укажет направление силы
,
действующей на заряд со стороны магнитного
поля.
Для
отрицательного заряда направление
следует изменить на противоположное.
Рис. 6. Правило левой руки для определения направления силы Лоренца.
1.5. Сила Ампера. Правило левой руки для определения направления силы Ампера
Экспериментально установлено, что на проводник с током, находящийся в магнитном поле, действует сила, получившая название силы Ампера (см. п. 1.3.). Направление силы Ампера (рис. 4) определяется правилом левой руки (см. п. 1.3).
Модуль силы Ампера вычисляется по формуле
,
где
–
сила тока в проводнике,
-
индукция магнитного поля,
-
длина проводника,
-
угол между направлением тока и вектором
.
1.6. Магнитный поток
Магнитным
потоком
сквозь
замкнутый контур называется скалярная
физическая величина, равная произведению
модуля вектора
на площадь
контура и на косинус угла
между
вектором
и
нормалью
к контуру (рис. 7):
Рис. 7. К понятию магнитного потока
Магнитный
поток наглядно можно истолковать как
величину, пропорциональную числу линий
магнитной индукции, пронизывающих
поверхность площадью
.
Единицей
магнитного потока является вебер
.
Магнитный поток в 1 Вб создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:
1 Вб =1 Тл·м2.
2. Электромагнитная индукция
2.1. Явление электромагнитной индукции
В 1831г. Фарадей обнаружил физическое явление, получившее название явления электромагнитной индукции (ЭМИ), заключающееся в том, что при изменении магнитного потока, пронизывающего контур, в нем возникает электрический ток. Полученный Фарадеем ток называется индукционным.
Индукционный ток можно получить, например, если постоянный магнит вдвигать внутрь катушки, к которой присоединен гальванометр (рис. 8, а). Если магнит вынимать из катушки, возникает ток противоположного направления (рис. 8, б).
Индукционный ток возникает и в том случае, когда магнит неподвижен, а движется катушка (вверх или вниз), т.е. важна лишь относительность движения.
Но не при всяком движении возникает индукционный ток. При вращении магнита вокруг его вертикальной оси тока нет, т.к. в этом случае магнитный поток сквозь катушку не изменяется (рис. 8, в), в то время как в предыдущих опытах магнитный поток меняется: в первом опыте он растет, а во втором – уменьшается (рис. 8, а, б).
Направление индукционного тока подчиняется правилу Ленца:
возникающий в замкнутом контуре индукционный ток всегда направлен так, чтобы создаваемое им магнитное поле противодействовало причине, его вызывающей.
Индукционный ток препятствует внешнему потоку при его увеличении и поддерживает внешний поток при его убывании.
Рис. 8. Явление электромагнитной индукции
Ниже
на левом рисунке (рис. 9) индукция внешнего
магнитного поля
,
направленного "от нас" (+) растет
(
>0),
на правом – убывает (
<0).
Видно, чтоиндукционный
ток
направлен так, что его собственное
магнитное
поле препятствует изменению внешнего
магнитного потока, вызвавшего этот ток.
Рис. 9. К определению направления индукционного тока