
- •Лекции по курсу
- •2. Литература, необходимая для изучения курса.
- •3.Цели и задачи дисциплины.
- •4.Требования к уровню освоения содержания дисциплины.
- •5.Структура современного естествознания.
- •6.Методология естествознания.
- •7.История естествознания.
- •1. Пространство и время
- •2. Механическая форма движения материи. Основы классической механики
- •3. Релятивистская концепция механического движения. Представления специальной теории относительности
- •4. Понятие об общей теории относительности. Влияние гравитации на пространство и время
- •5. Масштабы пространства, времени.
- •6. Современные представления о структуре и эволюции Вселенной
- •1. Ритм как упорядочение времени
- •2. Космические и биологические ритмы
- •3. Общая характеристика колебаний
- •4. Виды колебаний
- •5. Общая характеристика волны
- •6. Упругие волны
- •7. Электромагнитные волны
- •8. Волновые явления
- •1. Симметрия
- •2. Законы сохранения
- •3. Фундаментальные взаимодействия
- •4. Развитие представлений о физических полях
- •5. Концепция обменного взаимодействия
- •6. Концепция корпускулярно-волнового дуализма в современной физике
- •7. Основные положения квантовой механики
- •8. Структура микромира
- •1. Термодинамический и статистический методы описания систем
- •2. Общие свойства систем. Системный подход
- •3. Основы равновесной термодинамики (термодинамики изолированных систем)
- •4. Основы неравновесной термодинамики
- •5. Термодинамика сильно неравновесных систем
- •6. Эволюция самоорганизующихся систем
- •Активная
- •7. Синергетика и экономика
- •1. Предмет химии
- •2. Основные понятия и законы классической химии
- •3. Систематизация химических элементов. Периодический закон д.И.Менделеева
- •4. Особенности развития химии на рубеже хiх-хх вв.
- •5. Развитие химического атомизма в первой половине XX в. Квантовый уровень химии
- •6. Концепция химической эволюции
- •1. Экология как наука о взаимоотношении живых систем с неживой природой
- •2.Структура и основные направления развития экологии
- •Экология
- •Фундаментальная
- •3.Биосфера.
- •4.Экосистемы и основы их жизнедеятельности
- •Биотические компоненты экосистемы
- •5.Экологические факторы.
- •6.Глобальные проблемы современности.
- •Загрязнение
- •1. Общая характеристика живых систем
- •2. Молекулярно-генетический уровень организации биологических систем
- •3. Клеточный уровень организации жизни
- •4. Онтогенетический уровень организации биологических систем
- •5. Популяционно-видовой уровень
- •7. Биосферный уровень
- •8. Развитие представлений о биологической эволюции
- •9. Основные этапы эволюции жизни
- •Словарь терминов
- •Литература
2. Законы сохранения
Закон сохранения импульса. Как указано выше, импульсом называется произведение массы частицы на её скорость (2.5). Закон сохранения импульса: в замкнутой системе тел суммарный импульс (векторная сумма импульсов, входящих в систему тел) есть величина постоянная.
Данный закон выполняется как в макромире, где позволяет рассмотреть взаимодействия тел при ударе и определяет возможность движения тел без опоры – реактивного движения, так и в микромире, при взаимодействиях микрообъектов. Это дает возможность определять характеристики и изучать особенности превращения микрочастиц по фотографиям их столкновений (методом толстослойных фотоэмульсий).
Закон сохранения момента импульса. В классической механике моментом импульса частицы относительно точки называется векторное произведение радиуса-вектора частицы на ее импульс:
.
( 4.1)
Закон сохранения момента импульса : в замкнутой системе тел суммарный момент импульса относительно неподвижной точки есть величина постоянная.
Момент импульса важнейшая характеристика вращающихся систем, связывающая распределение массы объекта и скорость его вращения. Изменение распределения массы в такой системе вследствие закона сохранения момента импульса приводит к изменению быстроты вращения. Движение фигуристки резко ускоряется, когда она прижимает к груди ранее разведенные в стороны руки.
Вращение – одно из наиболее общих свойств космических объектов различных уровней. Планеты, их спутники, звезды вращаются вокруг своих осей. Спутники обращаются вокруг планет, планеты – вокруг Солнца, Солнечная система – вокруг центра Галактики и т.д. Данные явления объясняются сохранением результирующего момента импульса систем, которым они обладали при возникновении, например вследствие неравномерности распределения частиц вещества.
Закон сохранения момента импульса позволяет количественно описать движение всех небесных тел в центральном поле тяготения, создаваемом Солнцем. Применяя его, можно получить второй закон Кеплера, описывающий изменение скорости планеты при ее движении по эллиптической орбите вокруг Солнца, а также объяснить резкое увеличение скорости комет при их приближении к Солнцу.
Микрообъекты обладают изначально присущим им собственным моментом импульса, не связанным с движением, – спином. Спин является одной из важнейших характеристик микрочастиц, имеющей чисто квантовую природу, а поэтому принимающую лишь определенный дискретный набор разрешенных значений. По величине спина микрочастицы делятся на частицы с целым спином – бозоны и частицы с полуцелым спином – фермионы. К бозонам относится, например, фотон, а фермионами являются электрон, протон, нейтрон. Закон сохранения момента импульса распространяется и на микромир, спин также является сохраняющейся величиной.
Закон сохранения энергии. Идея единства различных форм движения материи, их взаимного превращения привело к формированию понятия энергии как единой меры различных форм движения материи. Данное понятие связывает воедино все явления природы. При этом в соответствии с различными формами движения рассматривают разные формы энергии: механическую, внутреннюю, электромагнитную, ядерную и др. Энергия характеризует систему относительно возможных в ней превращений одних форм движения в другие.
Закон сохранения энергии: в замкнутой системе энергия может превращаться из одной формы в другую, переходить от одних тел к другим, но ее суммарная величина остается неизменной.
Таким образом, энергия не исчезает и не создается из ничего, она может изменяться лишь при взаимодействии системы с другими объектами. При этом изменение энергии системы тел при переходе из одного состояния в другое не зависит от того, каким способом осуществляется этот переход, следовательно, энергия – однозначная функция состояния системы.
В макромире энергия любой системы меняется непрерывно и может принимать любые значения. В микромире, если движение частицы ограничено в пространстве, ее энергия имеет дискретный спектр, то есть для взаимодействующего микрообъекта возможны лишь определенные значения энергии.
Релятивистская механика связала массу тела (m) с его полной энергией (Е) в отсутствии внешних полей
Е=mc2 ,
где с – скорость света в вакууме.
Это привело к объединению законов сохранения энергии и массы, раздельно существовавших в классической механике.