Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рыбаков Лекции по КСЕ.doc
Скачиваний:
37
Добавлен:
17.05.2015
Размер:
1.38 Mб
Скачать

5. Масштабы пространства, времени.

При выяснении сущности понятий «пространство», «время», «материя» естественно возникает вопрос об их измерении, предельных размерах или, наоборот, минимальных «порциях» – квантах, если таковые существуют. Представление о пространственных, временных диапазонах и массах различных объектов дают три масштабные оси, представленные на вкладыше. Для более полной информации приведены масштабы массы объектов

Из рисунка видно, что во Вселенной наблюдаются объекты различных размеров. Самый большой - наша Вселенная, размер которой сегодня достигает 1026 м, (об изменении размеров Вселенной в процессе эволюции речь пойдет дальше). Если представить Землю уменьшенной до величины атома, расстояние 1025 м сожмется до размеров лунной орбиты. В космических масштабах измерять расстояния в метрах неудобно. Используются единицы: световой год (расстояние, которое свет проходит за год), равный 9,5·1015 м; парсек (пс), равный 3,26 светового года или 4·1016 м; астрономическая единица (а.е.)  радиус земной орбиты, равный 1,5·1011 м. Размеры объектов микромира устанавливаются с помощью мощных ускорителей. Удалось установить не только размер ядра атома водорода, т.е. протона - 1,2·10-15 м, но и достичь пространственных интервалов в тысячу раз меньше. Для этого сталкивают два пучка частиц высоких энергий, относительная скорость которых так велика, что «размытие» их траекторий из-за волновых свойств меньше 10-18 м. Возможны ли меньшие интервалы? Существуют модели, в которых рассматривается предельно малый размер 10-35 м. За этим пределом научное описание, основанное на известных физических законах, невозможно. Именно с этого размера – сингулярного состояния - по современным представлениям начиналась эволюция нашей Вселенной. С этим минимальным пространственным интервалом связан и минимальный интервал времени 10-43 с - интервал, который затрачивает свет на прохождение расстояния 10-35 м. Это время существования Вселенной в сингулярном состоянии. С Вселенной связан и самый больший промежуток времени – ее возраст ~1018 с, или около 20 млрд. лет, - и самая большая масса - масса видимого вещества 10 51 кг.

В целом по пространственным масштабам и особенностям свойств материи принято выделять три области:

микромир – от 10-35 м до 10 -10 м (размер атома);

макромир – от 10-10 м до 10 13 м (радиус орбиты Плутона - последней планеты Солнечной системы);

мегамир – от 10 13 м до 10 26 м.

6. Современные представления о структуре и эволюции Вселенной

Современные методы астрономических исследований

В XX в. радикально изменилась древнейшая наука – астрономия. Это связано, как с появлением её новой теоретической основы – релятивистской и квантовой механики, так и с расширением возможностей экспериментальных исследований.

Общая теория относительности стала одной из основополагающих теорий космологии, а создание квантовой механики дало возможность изучать не только механическое движение космических тел, но и их физические и химические характеристики. Получили развитие звездная и внегалактическая астрономия. Астрономия стала всеволновой, т.е. астрономические наблюдения проводятся на всех диапазонах длин волн электромагнитного излучения (радио, инфракрасный, видимый, ультрафиолетовый, рентгеновский и гамма-излучение). Ее экспериментальные возможности существенно возросли с появлением космических аппаратов, позволяющих проводить наблюдения за пределами земной атмосферы, поглощающей излучение. Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (а часто и необъяснимых) явлений.

Основной инструмент астрономических исследований - телескоп, другие приборы, например спектроскопические, исследуют излучение, собираемое телескопом. Сейчас лишь малая часть астрономических работ осуществляется визуально, в основном исследования проводятся с помощью фотокамер и других регистрирующих излучение приборов. Появились радиотелескопы, позволяющие изучать радиоизлучение всевозможных объектов Солнечной системы, нашей и других галактик. Радиоастрономия чрезвычайно расширила знания о Вселенной и привела к открытию пульсаров (нейтронных звезд), квазаров – внегалактических объектов, являющихся самыми мощными из известных источников излучения, позволила получить информацию о наиболее удаленных областях Вселенной, обнаружить изотропное «реликтовое» излучение. Все это – важнейшие открытия ХХ в. Дополнительную информацию дают и исследования в инфракрасном, ультрафиолетовом, рентгеновском и - диапазонах, но эти излучения сильно поглощаются атмосферой, и соответствующая аппаратура устанавливается на спутниках. К выдающимся открытиям ХХ в. относится и обнаруженное в 1929 г. американским астрономом Эдвином Хабблом (1889 – 1953) увеличение длины волны, соответствующей линиям в спектрах удаленных галактик («красное смещение»), которое свидетельствует о взаимном удалении космических объектов, т.е. о расширении Вселенной.

Структура Вселенной

Солнечная система. Солнечная система – космический дом человечества. Солнце - источник тепла и света, источник жизни на Земле. Солнечная система - взаимосвязанная совокупность звезды – Солнца и множества небесных тел, к которым относятся девять планет, десятки их спутников, сотни комет, тысячи астероидов и др. Все эти разнообразные тела объединены в одну устойчивую систему благодаря силе гравитационного притяжения центрального тела – Солнца.

Солнце – плазменный шар, состоящий в основном из водорода и гелия, находящийся в состоянии дифференцированного вращения вокруг своей оси. Наибольшая скорость вращения в экваториальной плоскости – один оборот за 25,4 суток. Источником солнечной энергии, скорее всего, являются термоядерные реакции превращения водорода в гелий, протекающие во внутренних областях солнца, где температура достигает 107 К. Температура поверхностных частей 6000 К. Поверхность Солнца не является гладкой, на ней наблюдаются гранулы, обусловленные конвективными газовыми потоками, возникают и исчезают «пятна», вихри. Взрывные процессы на Солнце, солнечные вспышки, периодически возникающие на его поверхности пятна, могут служить мерой активности Солнца. Исследования показали, что цикл максимальной активности Солнца регулярен и составляет приблизительно 11 лет. Пятна и вспышки на Солнце – наиболее заметные проявления магнитной активности Солнца. Связь между солнечной активностью и процессами на Земле отмечалась ещеXIX веке, а в настоящее время имеется огромный статистический материал, подтверждающий влияние активности Солнца на земные процессы.

Разработанная в XVII – XVIII вв. теоретическая основа классической астрономии – классическая механика позволяет прекрасно описать движение связанных гравитационным взаимодействием тел Солнечной системы, но не дает ответа на вопрос о ее происхождении. Планеты солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, за исключением последней движутся вокруг Солнца в одном направлении в единой плоскости по эллиптическим орбитам. Планеты, как и их спутники, не являются самосветящимися телами и видны только потому, что освещены Солнцем. С 1962 г. планеты и их спутники исследуются не только с Земли, но и с космических станций. В настоящее время накоплен обширный фактический материал об особенностях физических и химических свойств поверхности планет, их атмосферы, магнитном поле, периодах вращения вокруг оси и Солнца. По физическим характеристикам планеты делятся на две группы: планеты-гиганты (Юпитер, Сатурн, Уран, Нептун) и планеты земной группы (Меркурий, Земля, Венера, Марс). Орбита наиболее удаленной от Солнца планеты – Плутона, размер которого меньше размера спутника Земли – Луны, определяет размер Солнечной системы 1,2·1013м.

Солнечная система, являясь частью нашей галактики, как целое движется вокруг ее оси со скоростью 250 м/с, делая полный оборот за 225 млн. лет. Согласно современным представлениям формирование современной структуры Солнечной системы началась с бесформенной газопылевой туманности (облака). Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце – звезда второго ( или более позднего) поколения, т.к. кроме обычных для звезд водорода и гелия содержит и тяжелые элементы. Элементный состав Солнечной системы характерен для эволюции звезд. Под действием гравитационных сил облако сжималось так, что самая плотная его часть находилась в центре, где сосредоточена основная масса вещества первичной туманности. Там возникло Солнце, в недрах которого затем начались термоядерные реакции превращения водорода в гелий, являющиеся основным источником энергии солнца. По мере увеличения светимости Солнца газовое облако становилось все менее однородным, в нем появились сгущения –протопланеты. С ростом размеров и массы протопланет их гравитационное притяжение усиливалось, таким образом сформировались планеты. Остальные небесные тела образованы остатками вещества исходной туманности. Итак, примерно 4,5  5 млрд лет назад Солнечная система окончательно сформировалась в сохранившемся до нас виде. Вероятно, еще через 5 млрд лет Солнце истощит запасы водорода, и его структура начнет изменяться, что приведет к постепенному разрушению нашей Солнечной системы.

Хотя современные представления о происхождении Солнечной системы остаются на уровне гипотез, они согласуются с идеями закономерной структурной самоорганизации Вселенной в условиях сильнонеравновесного состояния.

Звезды. Галактики. Солнце – песчинка в мире звезд. Звезда – основная структурная единица мегамира. Стационарная звезда представляет собой высокотемпературный плазменный шар в состоянии динамического гидростатического равновесия. Она является тонко сбалансированной саморегулирующейся системой. В отличие от других небесных тел, например планет, звезды излучают энергию. Энергия, генерируемая в них ядерными процессами, приводит к возникновению в недрах звезд атомов химических элементов тяжелее водорода и является источником света. Звезды – природные термоядерные реакторы, в которых происходит химическая эволюция вещества. Они сильно различаются по своим физическим свойствам и химическому составу. Наблюдаются разные типы звезд, которые соответствуют разным этапам их эволюции. Эволюционный путь звезды определяется её массой, которая меняется в основном в пределах от 0,1 до 10 масс Солнца. Звезды рождаются, изменяются и гибнут. При массе, меньшей 1,4 солнечной, звезда, пройдя стадию красного гиганта, превращается сначала в белого карлика, затем – в черного карлика, холодную мертвую звезду, размер которой сравним с размером Земли, а масса – не более солнечной. Более массивные звезды на завершающем этапе эволюции испытывают гравитационный коллапс – неограниченное стягивание вещества к центру и могут вспыхнуть как сверхновые с выбросом значительной части вещества в окружающее пространство в виде газовых туманностей и превращением оставшейся части в сверхплотные нейтронную звезду или черную дыру.

Звезды образуют галактики  гигантские гравитационно связанные системы. Наша Галактика, в которую входит Солнце, называется Млечный путь и насчитывает 1011 звезд. Галактики разнообразны по размерам и по форме. По внешнему виду выделяют три типа галактик – эллиптические, спиральные и неправильные. Наиболее распространенными являются спиральные, к ним относится и Наша Галактика. Она представляет собой уплощенный диск с диаметром ~ 105 световых лет с выпуклостью в центре, откуда исходят спиральные рукава. Галактика вращается, причем быстрота вращения зависит от расстояния до ее центра. Солнечная система находится на расстоянии приблизительно 30 000 световых лет от центра галактического диска.

С Земли невооруженным глазом можно наблюдать три галактики – Туманность Андромеды (из Северного полушария) и Большое и Малое Магеллановы облака (из Южного). Всего же астрономы обнаружили около ста миллионов галактик.

Помимо миллиардов звезд галактики содержат вещество в виде межзвездного газа (водород, гелий) и пыли. Плотные газово-пылевые облака скрывают от нас центр нашей Галактики, поэтому о его структуре можно судить только предположительно. Кроме того, в межзвездном пространстве существуют потоки нейтрино и электрически заряженных частиц, разогнанных до околосветовых скоростей, а также поля (гравитационные, электромагнитные). Следует отметить, что, хотя количество молекул органических соединений в межзвездном веществе невелико, их присутствие является принципиально важным. Например, теория абиогенного происхождения жизни на Земле опирается на участие в этом процессе молекул органических веществ, электромагнитного излучения и космических лучей. Чаще всего органические молекулы встречаются в местах максимальной концентрации газопылевого вещества.

В конце 70-х годов нашего века астрономы обнаружили, что галактики во Вселенной распределены не равномерно, а сосредоточены вблизи границ ячеек, внутри которых галактик почти нет. Таким образом, в небольших масштабах вещество распределено очень неравномерно, но в крупномасштабной структуре Вселенной не существует каких-либо особых мест или направлений, поэтому в больших масштабах Вселенную можно считать не только однородной, но и изотропной.

Метагалактика. Мы вкратце рассмотрели структурные уровни организации вещества в мегамире. Есть ли верхняя граница в возможности наблюдения Вселенной? Современная наука отвечает на этот вопрос утвердительно. Существует принципиальное ограничение размеров наблюдаемой части Вселенной, связанное не с экспериментальными возможностями, а с конечностью её возраста и скорости света.

Космология на основе общей теории относительности Эйнштейна и закона Хаббла(см. ниже) определяет возраст Вселенной Твс 15-20 млрд лет (1018с). Никаких структурных единиц до этого не существовало. Введем понятие космологического горизонта, отделяющего те объекты от которых свет за время tвс до нас дойти не может. Расстояние до него

, (2.14)

где с – скорость света в вакууме, Твс – возраст Вселенной.

Космологический горизонт образует границу принципиально наблюдаемой части Вселенной - Метагалактики. Если принять, что возраст Вселенной 1018 с, то размер Метагалактики имеет порядок 1026м, причем космологический горизонт непрерывно удаляется от нас со скоростью 3·108 м/с.

Важное свойство Метагалактики в современном состоянии – её однородность и изотропность, т.е. свойства материи и пространства одинаковы во всех частях Метагалактики и по всем направлениям. Одно из важнейших свойств Метагалактики – её постоянное расширение, «разлет» галактик. Американский астроном Э. Хаббл установил закон, согласно которому чем дальше от нас находятся галактики, тем с большей скоростью они удаляются.

Расширяющаяся Вселенная – это Вселенная изменяющаяся. А значит, у неё есть своя история и эволюция. Эволюция Вселенной как целого изучается космологией, которая в настоящее время дает описание и первых мгновений её возникновения и возможных путей развития в будущем.

Космологические модели Вселенной

Модели стационарной Вселенной. Уникальность Вселенной не позволяет провести экспериментальную проверку выдвигаемых гипотез и поднять их до уровня теорий, поэтому эволюция Вселенной может рассматриваться только в рамках моделей.

После создания классической механики научная картина мира основывалась на ньютоновских представлениях о пространстве, времени и гравитации и описывала неизменную во времени, т.е. стационарную, бесконечную Вселенную, созданную Творцом.

В XX в. появились новые теоретические основы для создания новых космологических моделей.

Прежде всего надо упомянуть космологический постулат, согласно которому устанавливаемые в ограниченной части Вселенной физические законы справедливы и для всей Вселенной. Кроме того, считается аксиомой однородность и изотропность крупномасштабного распределения вещества во Вселенной. При этом модель эволюции должна соответствовать так называемому антропному принципу, т.е. предусматривать возможность появления на определенном этапе эволюции наблюдателя (разумного человека).

Поскольку именно тяготение определяет взаимодействие масс и на больших расстояниях, теоретическим ядром космологии ХХ в. стала релятивистская теория гравитации и пространства–времени – общая теория относительности. Согласно данной теории распределение и движение материи определяют геометрические свойства пространства-времени и в то же время сами зависят от них. Гравитационное поле проявляется как «искривление» пространства-времени. В первой космологической модели Эйнштейна, созданной на основе общей теории относительности в 1916 г., Вселенная также стационарна. Она безгранична, но замкнута и имеет конечные размеры. Пространство замыкается само на себя.

Фридмановские модели нестационарной Вселенной. Эйнштейновская модель стационарной Вселенной была опровергнута в работах русского ученого А.А. Фридмана (1888 – 1925) , который в 1922 г. показал, что искривленное пространство не может быть стационарным: оно должно либо расширяться, либо сжиматься. Возможны три различных модели изменения радиуса кривизны Вселенной, зависящие от средней плотности вещества в ней, причем в двух из них Вселенная бесконечно расширяется, а в третьей – радиус кривизны периодически изменяется (Вселенная пульсирует).

Хотя открытие Э. Хабблом закона зависимости скорости удаления галактик от расстояния до них подтвердило расширение Вселенной, в настоящее время сравнение экспериментально оцененной плотности вещества с критическим значением данного параметра, определяющим переход от расширения к пульсации, не дает возможности однозначно выбрать сценарий дальнейшей эволюции. Эти две величины оказались близки, а экспериментальные данные - недостаточно надежны.

Расширение Вселенной в настоящее время является обоснованным и общепризнанным фактом, позволяющим оценить возраст Вселенной. В соответствии с наиболее распространенными оценками он составляет 1018с (18 млрд лет). Следовательно, современные модели предполагают «начало» Вселенной. Как же началась ее эволюция?

Модель горячей Вселенной. В основе современных представлений о начальных стадиях эволюции Вселенной лежит модель «горячей Вселенной», или «Большого Взрыва», основы которой были заложены в 40-х годах XX в. российским ученым, работавшим в США, Г.А. Гаммовым (1904 – 1968). В простейшем варианте данной модели представляется, что Вселенная возникла спонтанно в результате взрыва из сверхплотного и сверхгорячего состояния с бесконечной кривизной пространства (состояния сингулярности). «Горячесть» начального сингулярного состояния характеризуется преобладанием в нем электромагнитного излучения над веществом. Это подтверждается экспериментально обнаруженным в 1965 году американскими астрофизиками Пензиасом (г. р. 1933) и Вильсоном (г. р. 1936) изотропным электромагнитным «реликтовым излучением». Современные физические теории позволяют описать эволюцию материи начиная с момента времени t = 10-43c. Самые начальные моменты эволюции Вселенной пока находятся за физическим барьером. Только начиная с момента t = 10-10 c после Большого Взрыва наши представления о состоянии вещества в ранней Вселенной и происходящих в ней процессах могут быть проверены экспериментально и описаны теоретически.

По мере расширения Вселенной плотность вещества в ней уменьшается и температура падает. При этом происходят процессы качественных превращений частиц вещества. В момент 10-10с вещество состоит из свободных кварков, лептонов и фотонов (см. раздел III). По мере остывания Вселенной происходит образование адронов, затем возникают ядра легких элементов – изотопов водорода, гелия, лития. Синтез ядер гелия прекращается в момент t = 3 мин. Только через сотни тысяч лет ядра соединяются с электронами, и возникают атомы водорода и гелия, и с этого момента вещество перестает взаимодействовать с электромагнитным излучением. «Реликтовое» излучение возникло именно в этот период. Когда размеры Вселенной были примерно в 100 раз меньше, чем в настоящую эпоху, из неоднородностей газообразного водорода и гелия возникли газовые сгустки, которые фрагментировались и привели к возникновению звезд и галактик.

Вопрос об исключительности Вселенной как объекта космологии остается открытым. Наряду с распространенной точкой зрения, что вся Вселенная – это наша Метагалактика, существует противоположное мнение, что Вселенная может состоять из множества метагалактик, а представление об уникальности Вселенной является исторически относительным, определяемым уровнем науки и практики.

Лекция 3. Ритмы, колебания, волны

План лекции:

1.Ритм как упорядочение времени

2.Космические и биологические ритмы.

3.Общая характеристика колебаний.

4.Виды колебаний.

5.Общая характеристика волны.

6.Упругие волны.

7.Электромагнитные волны.

8.Волновые явления.