Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив 1 семестр 1 курс / UchPos_KSE_Chast_III.doc
Скачиваний:
58
Добавлен:
16.05.2015
Размер:
1.5 Mб
Скачать

8.2. Волновые процессы. Континуальная концепция описания волн в классической физике

Волновым процессом (волной) называется процесс распространения колебаний в пространстве. По своей природе волны подразделяются на механические, электромагнитные и проч. Механическая волна – процесс распространения в пространстве колебаний частиц. Примеры: волны на поверхности жидкости, на струне, упругие волны в сплошной среде. Электромагнитная волна - процесс распространения в пространстве взаимосвязанных колебаний электрического и магнитного полей.

Распространение волн той или иной природы сопровождается переносом соответствующей энергии (механической или энергии электромагнитного поля).

Волна называется гармонической (синусоидальной), если в каждой точке пространства, где происходит волновой процесс, колеблющаяся величина совершает гармонические колебания.

Получим уравнение бегущей волны. Пусть волна со скоростью распространяется в обоих направлениях вдоль осиOX от источника гармонических колебаний, расположенного в точке x=0. То есть колеблющаяся величина s (смещение частиц от положения равновесия для механической волны, напряженность электрического поля или индукция магнитного поля для электромагнитной волны) в точке расположения источника зависит от времени по закону

.

В точке с координатой будут происходить такие же колебания, но с запаздыванием. Время запаздыванияАмплитуда волныв точкеможет отличаться от амплитудыA колебаний в точке x=0 вследствие затухания волны. Таким образом, колеблющаяся величина s в точке зависит от времени по закону

.

Для волны, бегущей в положительном направлении оси OX, , то естьи последняя формула принимает вид

, (8.3)

где - волновое число.

Для волны, бегущей во встречном направлении,

. (8.4)

Уравнения (8.3) и (8.4) называются уравнениями бегущей волны.

На рисунке 8.1 изображен график бегущей волны, то есть график зависимости величины s от координаты x для двух моментов времени: t (сплошная линия) и (пунктир). Черные точки соответствуют значениямs в точках O, B, C, D, E, F в момент времени t, светлые - значениям s в тех же точках, но в момент . Стрелки указывают направление изменения величиныs в промежутке времени от t до . Из рисунка видно, что в точкахB и F, а также в точках O и E колебания происходят совершенно одинаково, синхронно, или, как говорят в теории колебаний, синфазно. В точках O и C колебания, напротив, противофазны: если в точке O за время значениеs уменьшилось на некоторую величину, то в точке C - увеличилось на ту же величину. Кратчайшее расстояние между двумя точками, в которых колебания происходят синфазно (между точками B и F, или равное расстояние между точками O и E), называется длиной волны . Иначе говоря, длина волны есть расстояние, которое проходит волна за один период:

. (8.5)

Рисунок 8.1 - График бегущей волны для двух моментов времени.

Различают продольные и поперечные волны. Если направление колебаний совпадает с направлением распространения волны - волна продольная, если эти направления перпендикулярны друг другу - волна поперечная.

Волны на поверхности жидкости, на струне, электромагнитные волны на значительном удалении от источника – поперечные (см. рисунок 8.2). Упругие волны в твердом теле могут быть и продольными и поперечными, в жидкостях и в газах - только продольными.

Рисунок 8.2 – Плоско-поляризованная электромагнитная поперечная волна.

Звуковыми волнами (звуком) называются упругие волны в среде, частота которых лежит в диапазоне от 20 Гц до 20 000 Гц (единица частоты 1 герц (Гц) соответствует одному колебанию в секунду). Упругие волны с частотой более 20 000 Гц называются ультразвуком, с частотой ниже 20 Гц - инфразвуком. Скорость звука в воздухе – примерно 330 м/с.

Электромагнитные волны в вакууме распространяются со скоростью, которую часто называют скоростью света, c=300 000 км/с = 3·108 м/с. Электромагнитные волны, используемые в технике и наблюдаемые в природе, имеют самые различные длины волн. В зависимости от длины волны в вакууме они подразделяются на ряд диапазонов (границы между диапазонами довольно условны), приведенных в таблице 8.1.

Таблица 8.1 - Диапазоны электромагнитных волн.

Длина волны , м

Название

диапазона

Источник

электромагнитных

волн

10-3

10-3 0.75·10-6

от 0.75·10-6 (красный свет)

до 0.4·10-6 (фиолетовый

свет)

0.4·10-6 10-9

2·10-96·10-12

6·10-12

Радиоволны

Инфракрасное

излучение

Видимый свет

Ультрафиолетовое

излучение

Рентгеновское

излучение

Гамма-излучение

Переменные токи

Излучение молекул и атомов

-""-

-""-

Атомные процессы при воздействии ускоренных заряженных частиц

Ядерные процессы, радиоактивный распад, космические процессы

Свет (электромагнитная волна) называется поляризованным, если направления колебаний напряженности электрического поля и индукциимагнитного поля, будучи перпендикулярными направлению распространения волны, остаются неизменными со временем или меняются по определенному закону. Если же направления векторовихаотически изменяются со временем (оставаясь перпендикулярными направлению распространения волны), то свет называется естественным.

Волны любой природы испытывают отражение и преломление на границе раздела сред. В реальных средах скорость распространения волн зависит от частоты волны; наличие такой зависимости называется явлением дисперсии.

Явление огибания волнами препятствий называют дифракцией волн. Дифракция особенно заметна, если размеры препятствия соизмеримы с длиной волны. Поэтому мы часто наблюдаем огибание крупных препятствий волнами со сравнительно большой длиной волны (звуковыми или радиоволнами), а для наблюдения дифракции света должны использовать микроскопические препятствия.

К волновым явлениям относится также явление интерференции. Интерференцией волн называют наложение в пространстве двух или более взаимно когерентных волн, в результате которого в одних точках пространства колебания усиливаются, а в других - ослабляются. При интерференции света возникает интерференционная картина - чередование светлых и темных полос, при интерференции звуковых волн возникают области с повышенной громкостью при одновременном подавлении звука в других областях пространства.

Чтобы волны могли интерферировать, они должны быть взаимно когерентными, то есть иметь одинаковую частоту и неизменную во времени разность начальных фаз.

В физике при описании материальных объектов используют корпускулярную и континуальную концепции. Так, в классической механике господствует корпускулярная концепция: тела рассматриваются как изолированные, четко ограниченные, дискретные объекты. В классической электродинамике при описании поля используется континуальная концепция - поле рассматривается как непрерывно распределенный в пространстве материальный объект, отличительными чертами которого являются протяженность и непрерывность. В статистической физике при изучении макроскопических тел вновь проявляется корпускулярная концепция: тела рассматриваются как совокупность дискретных частиц. В термодинамике вопрос о дискретности или непрерывности (континуальности) объектов роли не играет.

В классической теории механических и электромагнитных волн преобладает континуальный подход. Среда, в которой распространяются волны, рассматривается как сплошная, не разделенная на частицы субстанция. Молекулярно-атомарная дискретность среды, как правило, в физике волн роли не играет. В классической физике и сами волны рассматривается в рамках континуальной концепции. Их испускание и поглощение считаются процессами протяженными и непрерывными во времени. Распространение волны, сопровождающееся переносом энергии, также считается процессом непрерывным в некоторой области пространства и времени, в пределах которой происходит постоянное и непрерывное изменение колеблющейся величины.

Итак, в различных разделах классической физики преобладает либо корпускулярный, либо континуальный подход к описанию реальности и их совмещение представляется невозможным. Однако квантовая физика преодолела различие этих двух подходов и установила возможность и необходимость совмещения этих подходов к описанию материальных объектов и явлений.

Соседние файлы в папке Архив 1 семестр 1 курс