Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ольшевская Н.А. - Высшая математика - метод. указания для II курса.doc
Скачиваний:
85
Добавлен:
16.05.2015
Размер:
1.48 Mб
Скачать

Глава 1. Комплексные числа

1.1. Основные понятия

Комплексным числом z называется выражение вида z=x+iy, где х и у – действительные числа , i – мнимая единица, при этом i2= -1.

Число х – называется действительной частью комплексного числа и обозначается x=ReZ, а у – мнимой частью Z, y=ImZ.

Два комплексных числа z1=x1+iy1 и z2=x2+iy2 называются равными тогда и только тогда, когда равны их действительные части и равны их мнимые части: z1= z2, если x1= x2 и y1= y2.

Два комплексных числа z=x+iy и =x-iy, отличающиеся лишь знаком мнимой части, называются сопряженными.

Любое комплексное числоz=x+iy можно изобразить точкой на плоскости ХОУ и любой точке плоскости можно поставить в соответствие какое-то комплексное число. При этом x=ReZ, y=ImZ, сама плоскость ХОУ называется комплексной.

Комплексное число z=x+iy можно задать иначе, определив длину радиуса-вектора точки М, получившую название модуля комплексного числа, и величину угла между положительным направлением оси ОХ и радиусом-вектором. Этот угол (рис.1) называется аргументом комплексного числа, который обозначается как argZ.

Запись комплексного числа в виде z=x+iy называется алгебраической формой комплексного числа. Тригонометрическая форма определяет число z через его модуль и аргумент и имеет вид z=r(cos+isin), где , - аргумент комплексного числа; . При определении аргумента необходимо учитывать четверть комплексной плоскости, в которой лежит точка, соответствующая данному комплексному числу:

Вид числа z=rei называется показательной формой комплексного числа.

1.2. Операции над комплексными числами

Пусть даны два комплексных числа в алгебраической форме: z1=x1+y1i и z2=x2+y2i. Тогда

z1 z2=(x1 x2)+(y1y2)i;

z1z2=( x1+y1i)( x2+y2i)= x1x2+ x2 у1i+ x1 у2i+ у1y2i2 =( x1x2- у1y2)+i(x2 у1+ + x1 у2);

Если комплексные числа заданы в тригонометрической форме как z1=r1(cos1+isin1) и z2=r2(cos2+isin2),

то z1z2= r1r2(cos(1+2)+isin(1+2);

.

Формулы Муавра для возведения комплексных чисел в натуральную степень и извлечения корня n-й степени из комплексных чисел имеют вид:

(x+yi)n=(r(cos+isin))n=rn(cosn+isinn);

где k=0,1,2,…,n-1.

________________

1. Выполнить действия над комплексными числами:

а) (2+3i)(3-2i); б) (a+bi)(a-bi); в) (3-2i)2; г) (1+i)3; д) ; e).

2. Найти , если z1=3+5i; z2=2+3i; z3=1+2i.

3. Заданы комплексные числа: а) 1; б) i; в) -1; г) –i; д) 23-2i; е) 3+i; ж) 1+i3. Изобразить эти числа векторами на комплексной плоскости и записать их в тригонометрической и показательной формах.

4. Вычислить по формуле Муавра:

а) ; б) (-1+i)5; в) (1-i3)6.

5. Найти: а) ; б); в); г). Найденные значения изобразить точками на комплексной плоскости.

6. Решить уравнения на множестве комплексных чисел:

а) х3+8=0; б) х4+4=0; в) х5+32i=0; г) х3=42(1+i).

__________________

7. Выполнить действия над комплексными числами:

а)(1+i)(5-2i); б) 1+i3-; в) ; г).

8. Записать в тригонометрической форме числа: а) 3i; б) -1-3i; в) 2-2i Изобразить эти числа на комплексной плоскости.

9. Вычислить: а) (2+3i)3; б) (cos2+isin2)45; в) (-2+2i)6; г) (1+ i3)9.

10. Найти значения: а) ; б); в).

11. Решить уравнения: а) х2+i=0; б) х4-16=0; в) х6-4х3+8=0. В задании в) ответ записать в показательной форме.

____________________

Ответы:

  1. а) 12+5i; б) a2+b2; в) 5-12i; г) -2-2i; д) i; е)1+i.

  2. .

  3. а)1(cos0+isin0)=1e0i; б); в)1(cos+isin)= =1ei; г); д); е) ; ж).

  4. а) 1; б) 4(1-i); в) 64.

  5. а) 1; ; б) –i; ; в) 1+i; -1,36+0,365i; 0,365-1,36i; г) .

  6. а) -2; 1; б)1i; в) ,k=0;1,…4; г) , k=0;1,2.

  7. а) (5+2)+(5-2)i; б) 1; в) ; г)0.

  8. а) ; б); в).

  9. а) -46+9i; б) i; в) 512i; г) .

10. а) , k=0;1,2,3;

б) , k=0;…,4;

в) , k=0;…,5.

11. а) ; б)2; 2i; в) .