Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа 16--.doc
Скачиваний:
15
Добавлен:
16.05.2015
Размер:
1.19 Mб
Скачать

4. Вопросы для самоконтроля

1. В чем заключается явление интерференции света? 2. Какие источники света называются когерентными? 3. Каким образом получаются когерентные источники света? 4. Каковы условия наблюдения интерференционных максимумов и минимумов? 5. На чем основано устройство интерферометров и каково их назначение?

Лабораторная работа № 23 получение и исследование поляризованного света

Цель работы:изучить явление поляризации света; экспериментально проверить закон Малюса.

1. Теоретическое введение

Согласно электромагнитной теории, свет представляет собой поперечные электромагнитные волны. При этом вектор напряженности электрического поля , вектор напряженности магнитного поляи вектор скорости распространения светавзаимно перпендикулярны. Физиологическое, химическое и фотоэлектрическое воздействия световой волны определяются электрическим полем, в связи с этим электрический векторволны называют световым вектором.

Свет, в котором колебания светового вектора в различных направлениях быстро и беспорядочно сменяют друг друга и с равной вероятностью могут происходить по всем направлениям, называется естественным (рис. 54 а). Свет, в котором направление колебаний

светового вектора в любой точке светового поля с течением времени остается неизменным или изменяется по определенному закону, называется поляризованным. В зависимости от характера этого изменения можно выделить различные типы поляризации световых волн:

1) плоско (или линейно) поляризованный свет (рис. 54 б);

2) поляризованный по кругу свет (рис. 54 в);

3) эллиптически поляризованный свет (рис. 54 г).

Получение поляризованного света тесным образом связано с явлением двойного лучепреломления, наблюдающимся в некоторых прозрачных кристаллах. Естественный луч света, войдя в кристалл, разделяется на два поляризованных луча. Эти лучи поляризованы во взаимно перпендикулярных плоскостях и распространяются в кристалле с различными скоростями. Различие в значениях скоростей распространения лучей обусловливает явление двойного лучепреломления. В одном из лучей в кристалле колебания светового вектора перпендикулярны главной плоскости кристалла (этот луч называется обыкновенным и обозначается буквой о, для него выполняется закон преломления). В другом луче колебания светового векторалежат в главной плоскости (такой луч называется необыкновенным и обозначается буквой е, для него закон преломления не выполняется).

2. Описание установки и метода измерений

Для получения и анализа поляризованного света используются поляризаторы и анализаторы. В установке, схема которой представлена на рис. 56, поляризатор П жестко закреплен в металлической трубе, анализатор А − в насадке с лимбом. Оба они имеют одну и ту же оптическую ось. Анализатор может вращаться вокруг данной оси, при этом угол его поворота относительно поляризатора можно фиксировать с помощью лимба насадки.

Свет от электрической лампочки S попадает на поляризатор П, проходя через который он поляризуется в некоторой плоскости, и на выходе из поляризатора его интенсивность равна Iп. Далее этот свет попадает на анализатор А. Интенсивность света Iа, вышедшего из анализатора, зависит от угла α между плоскостью пропускания поляризатора и плоскостью пропускания анализатора:

Iп=Iа⋅cos2α. (160)

Это и есть так называемый закон Малюса.

На выходе луча из анализатора установлен фотоэлемент Ф, соединенный с микроамперметром . Очевидно, сила i фототока пропорциональна интенсивности Iавыходящего из анализатора света, поэтому замерив величину силы фототока, можно определить интенсивность света, прошедшего через анализатор.