Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОЭП_ вопросы+ теория.doc
Скачиваний:
239
Добавлен:
02.05.2015
Размер:
4.22 Mб
Скачать

34. Некогерентные источники излучения. Достоинства и недостатки.

Источники некогерентного оптического излучения по физической природе можно разделить на следующие группы:

  • источники теплового излучения, возникающего в результате нагрева твердых тел или сжигания горючего вещества;

  • электролюминесцентные источники излучения, возникающего при прохождении электрического тока через газ или пары металлов;

  • источники смешанного излучения, в которых одновременно происходят электролюминесценция и тепловое излучение.

В качестве источников некогерентного ИК-излучения служат электрические излучатели с открытыми телами накалаи ИК-излучате-ли с телами накалав стеклянных оболочках.

В натриевых и ртутных лампах в качестве источника света используется дуга с горячим катодом, которая зажигается в парах указанных элементов.

Мощным импульсным источником некогерентного света является искровой разряд, примером которого может служить вспышка молнии.

Излучение некогерентных источников является результатом генерации колебаний огромного множества атомов (ионов, молекул). При этом фаза, частота и амплитуда колебаний, соответствующие излучениям отдельных атомов, хаотически меняются с очень большой скоростью по случайному закону. Каждый атом, ион и молекула излучают независимо друг от друга, и излучение их начинается в различные моменты времени. Излучение обычного источника света более похоже на статистический шум, чем на излучение какой-то определенной частоты. Такое излучение не является когерентным.

Колебания некогерентных источников нельзя преобразовать, т. е. нельзя, например, применить частотную или фазовую модуляцию для передачи информации, принципиально нельзя осуществлять супергетеродинный прием таких излучений и т. д. Такие некогерентные излучения годятся лишь для осуществления примитивной световой сигнализации.

Некогерентные источники излучения:

  • Лампы накаливания

  • Галогенные лампы

  • Штифт Нернста, силитовый излучатель, темные излучатели, трубчатые кварцевые излучатели

  • Глобар

Достоинства:

  • Можно достичь максимальной освещенности маленьких объектов

  • Можно хорошо коллимировать пучки

  • Хорошо подходят для исследований в ультрафиолетовой области

  • Может эмулировать солнечный свет

  • Просты в использовании

  • Дешевизна

Недостатки:Колебания некогерентных источников нельзя преобразовать, т. е. нельзя, например, применить частотную или фазовую модуляцию для передачи информации, принципиально нельзя осуществлять супергетеродинный прием таких излучений и т. д. Такие некогерентные излучения годятся лишь для осуществления примитивной световой сигнализации.

35. Структурная схема лазера. Назначение элементов.

36. Типы лазерных резонаторов. Потери в резонаторе.

37. Полупроводниковые лазеры. Способы накачки полупроводникового лазера.

Полупроводниковый лазер представляет собой два приведенных в контакт полупроводниковых вещества (один n-типа, другой р-типа) с электрическими контактами (питание). Две отшлифованные противоположные грани образуют резонатор (одна из граней покрыта соответствующим веществом, чтобы быть полностью отражающей).

Лазерный эффект в полупроводниковом лазере связан с межзонной люминесценцией - излучательной рекомбинацией созданных внешним воздействием избыточных электронов и дырок.

Полупроводниковый лазер включает в себя:

1) активный элемент из полупроводникового монокристалла, чаще всего в форме бруска ("чипа"). Собственно активная область элемента обычно составляет лишь его малую часть, и её объём, например, в современном, так называемом полосковом, инжекционном лазере, оказывается в пределах

2) Оптический резонатор полупроводникового лазера образован либо торцевыми зеркальными гранями активного элемента (изготовляемого обычно путём раскалывания пластин по плоскостям спайности кристалла), либо внешними отражателями и сложными устройствами с периодическими структурами обратной связи (брэгговскими отражателями и структурами распределённой обратной связи).