
- •1. Предмет и задачи микробиологии. Разделы микробиологии. Основные перспективные направления науки.
- •2. История развития микробиологии. Основные открытия. Достижения русских ученых в развитии микробиологии. Развитие современной науки.
- •3. Распространение микроорганизмов в природе. Участие в производственных процессах.
- •4. Неклеточные формы жизни. Морфология и размножение вирусов. Отличительные черты прионов.
- •5. Отличия вирусов от бактерий. Характеристика бактериофагов, их биологическое значение.
- •6. Клеточные формы жизни. Основные отличия прокариот от эукариот.
- •7. Характеристика эукариотических микроскопических организмов. Морфология дрожжей.
- •9. Характеристика эукариотических микроскопических организмов. Отличительные черты простейших, вызывающих инфекционные заболевания.
- •10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
- •11. Морфология бактерий. Химический состав бактериальной клетки.
- •12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
- •13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
- •14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
- •15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
- •16. Морфология бактерий. Запасные включения бактериальной клетки.
- •17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
- •18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
- •19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
- •20. Бактериальное ядро. Строение, состав. Характеристика днк.
- •21. Бактериальное ядро. Особенности генетической системы бактерии. Типы репликации днк бактерии.
- •22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
- •23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
- •24. Бактериальное ядро. Плазмиды. Биологическая роль, отличия от вирусов, виды плазмид.
- •25. Морфологическая дифференцировка прокариот. Формы клеток. Покоящиеся формы. Процесс поддержания состояния покоя.
- •26. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
- •27. Морфологическая дифференцировка прокариот. Биохимические и физиологические изменения в процессе прорастания эндоспроры. Факторы устойчивости эндоспор в окружающей среде.
- •28. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
- •29. Классификация и систематика бактерий. Классификация бактерий по Берджи. Признаки, используемые при описании бактерий. Характеристика основных групп бактерий по классификатору Берджи.
- •30. Классификация и систематика бактерий. Категории бактерий. Особенности эубактерий и архебактерий.
- •31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
- •32. Влияние физических факторов на микроорганизмы. Температура. Способность к росту при различных температурных условиях.
- •33. Влияние физических факторов на микроорганизмы. Температура. Способность к выживанию в экстремальных температурных условиях.
- •34. Влияние физических факторов на микроорганизмы. Влажность.
- •35. Влияние физических факторов на микроорганизмы. Давление. Осмотическое давление. Атмосферное. Гидростатическое давление и вакуум.
- •36. Влияние физических факторов на микроорганизмы. Лучистая энергия, уфл, ультразвук.
- •37. Влияние химических факторов на микроорганизмы. Кислотность и щелочность. Поваренная соль.
- •38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
- •39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
- •40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
- •41. Принципы консервирования пищевых продуктов, основанные на методах воздействия на бактерии различных факторов внешней среды. Влияние антибиотиков.
- •42. Питание микроорганизмов. Ферменты микроорганизмов. Классы и виды ферментов. Пути катаболизма.
- •43. Питание микроорганизмов. Механизмы транспорта питательных веществ в клетку. Пермеазы, ионофиоры. Характеристика процессов симпорта и антипорта. Транспорт железа.
- •44. Питание микроорганизмов. Типы питания. Источники энергии и углерода. Автотрофность. Гетеротрофность. Виды автотрофов.
- •45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
- •46. Питание микроорганизмов. Источники азота. Характеристика процесса азотфиксации. Механизм диазотрофии.
- •47. Питание микроорганизмов. Источники азота. Характеристика процессов нитрификации, денитрификации.
- •48. Питание микроорганизмов. Источники азота. Характеристика процесса аммонификации. Возбудители гниения белковых веществ.
- •49. Питание микроорганизмов. Источники серы. Восстановление и окисление серы и серосодержащих веществ. Сульфатредукция.
- •50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы
- •51. Метаболизм бактерий. Фотосинтез. Виды фотосинтезирующих бактерий. Фотосинтетический аппарат.
- •53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
- •54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
- •56. Биосинтетические процессы. Ассимиляция различных веществ.
- •57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
- •58. Биосинтетические процессы. Образование вторичных метаболитов. Токсинообразование. Виды токсинов.
- •59. Биосинтетические процессы. Образование вторичных метаболитов. Витамины, сахара, ферменты.
- •60. Регуляция метаболизма. Уровни регуляции метаболизма. Индукция. Репрессия.
- •62. Основы экологии микроорганизмов. Экология микробных сообществ.
- •63. Основы экологии микроорганизмов. Микроорганизмы воздуха.
- •64. Основы экологии микроорганизмов. Микроорганизмы морских водных экосистем.
- •65. Основы экологии микроорганизмов. Микроорганизмы солоноватых водных экосистем.
- •66. Основы экологии микроорганизмов. Микроорганизмы пресноводных экосистем.
- •67. Основы экологии микроорганизмов. Микроорганизмы почвенных экосистем.
- •68. Основы экологии микроорганизмов. Микроорганизмы почв. Микориза.
- •69. Основы экологии микроорганизмов. Круговорот углерода, водорода и кислорода.
- •70. Основы экологии микроорганизмов. Круговорот азота, фосфора и серы.
- •71. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Ротовая полость. Бактериальные заболевания.
- •72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
- •73. Основы экологии микроорганизмов. Симбионты организма человека. Дыхательные пути, выделительная, половая система.
- •74. Основы экологии микроорганизмов. Симбионты организма человека. Кожа, конъюктива глаза, ухо.
- •75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
- •76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
- •77. Инфекция. Эпидемический процесс. Источники и пути передачи. Распространение инфекции.
- •79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
- •81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
- •82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
- •83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
- •84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
- •85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
- •86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
- •87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
- •88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
- •89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
- •90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
Метаболизм – совокупность разнообразных ферментативных реакций, происходящих в микробной клетке и направленных на получение энергии и превращение простых химических соединений в более сложные. Метаболизм обеспечивает воспроизводство всего клеточного материала, включая два единых и одновременно противоположных процесса – конструктивный и энергетический обмен.
Метаболизм протекает в три этапа:
1.катаболизм – распад органических веществ на более простые фрагменты;
2.амфиболизм – реакции промежуточного обмена, в результате которых простые вещества превращаются в ряд органических кислот, фосфорных эфиров и пр.;
3.анаболизм – этап синтеза мономеров и полимеров в клетке.
Метаболические пути формировались в процессе эволюции.
Основным свойством бактериального метаболизма является пластичность и высокая интенсивность, обусловленная малыми размерами организмов.
К метаболическим путям у прокариот относятся брожение, фотосинтез и хемосинтез.
Хемосинтез – способ питания, при котором источником энергии для синтеза органических веществ служат процессы окисления различных неорганических и неорганических веществ. Хемосинтез часто сравнивают с дыханием, у микроорганизмов дыхание может быть аэробным и анаэробным.
Анаэробное дыхание – это энергодающий клеточный процесс, в котором конечным акцептором электронов служит окисленное органическое или неорганическое вещество, отличное от кислорода. Анаэробное дыхание сопряжено с функционированием электрон-транспортной цепи и является в эволюции энергетических процессов в клетках живых организмов переходным звеном от субстратного фосфорилирования к аэробному дыханию.
Происхождение кислородного дыхания
Общепринято представление о том, что молекулярный кислород атмосферы имеет биогенное происхождение, и его появление непосредственно связано с формированием нового типа фотосинтеза, при котором в качестве донора электронов используется вода. В условиях первобытной Земли до возникновения выделяющих кислород фотосинтезирующих эубактерий единственным источником свободного кислорода была реакция фотолиза паров воды в атмосфере, происходящая под действием коротковолнового ультрафиолета. Однако количество «фотолитического» кислорода было ничтожным по сравнению с его содержанием в современной земной атмосфере. Образующийся кислород использовался для окисления газов первобытной атмосферы и восстановленных минералов, входящих в состав земной коры.
Для переключения организма с брожения на дыхание достаточна концентрация кислорода 0,2%, т.е. 0,01% его уровня в современной атмосфере. Появление и накопление О2 в земной атмосфере было событием, значение которого для последующей эволюции жизни на Земле трудно переоценить. Образование О2 в возрастающих количествах сделало возможным протекание окислительных реакций в широких масштабах. Изменился характер атмосферы: из восстановительной она стала окислительной. В условиях бескислородной атмосферы доминирующим было решение проблемы акцептора электронов, а в условиях кислородной атмосферы основной становится проблема донора электронов, поскольку с появлением О2 в атмосфере Земли образовался источник превосходного акцептора электронов.
В период, предшествовавший появлению больших количеств свободного кислорода в атмосфере, прокариотное сообщество было разнообразнее, чем в последующее время. Разнообразие прокариотного сообщества значительно уменьшилось 1,5 млрд. лет назад.
По мере накопления О2 становится постоянным компонентом внешней среды. Это обусловило два возможных варианта последующего взаимодействия прокариот с молекулярным кислородом.
Одни из существовавших анаэробных форм перешли в места обитания, где О2 практически отсутствует. Другие были вынуждены приспособиться к аэробным условиям и формировать новые метаболические реакции, служащие для нейтрализации отрицательного действия молекулярного кислорода.
Токсические эффекты молекулярного кислорода и его производных
Как фактор внешней среды О2 воздействует на современные прокариотные организмы двояко: с одной стороны, он может быть абсолютно необходимым, с другой – с молекулярным кислородом и его производными связаны токсические эффекты для клеток.
Существует ряд гипотез, объясняющих чувствительность прокариот к О2:
Молекулярный кислород является токсическим соединением, агрессивное действие которого связано со способностью окислять клеточные метаболиты, необходимые для функционирования в восстановленном состоянии.
Токсичность молекулярного кислорода – следствие активного акцептирования им электронов с растворимых переносчиков, функционирующих в процессах брожения, что будет приводить к истощению восстановленных доноров электронов, необходимых для биосинтезов. Это приводит к подавлению роста и изменению выхода продуктов брожения, накоплению более окисленного продукта.
Для проявления токсического эффекта О2 вполне достаточно окисления им какого-либо одного ключевого метаболита или фермента, приводящего к их инактивации.
Три ферментные системы прокариот, особо чувствительные к молекулярному кислороду: нитрогеназа, гидрогеназа и рибулозодифосфаткарбоксилаза (фермент, катализирующий фиксацию СО2 у подавляющего большинства автотрофных прокариот).
Для нейтрализации токсических форм О2 существующие прокариоты выработали различные защитные механизмы, которые могут быть разделены на несколько типов:
*В клетке активизируются специальные ферменты, для которых разложение токсических форм О2 является основной и в ряде случаев единственной функцией.
*Для разрушения токсических форм О2 используются определенные клеточные метаболиты. Как правило, в этом случае участие в защите клетки от токсических эффектов производных О2 является не единственной функцией этих метаболитов.
*Ряд приспособлений, выработанных прокариотами на разных уровнях: популяционном, физиологическом, структурном, сформированных для других целей, но оказавшихся полезными и для детоксикации О2.