Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭЦ.docx
Скачиваний:
49
Добавлен:
01.05.2015
Размер:
1.59 Mб
Скачать

1.Схемы замещения электрических цепей

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях. I На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в Цепи. Схемы замещения элементов электрических цепей В. Элементы цепи, в которых электрическая энергия преобразуется в теплоту, характеризуются сопротивлением R или Роводимостью G и называются пассивными. Элементы электрической цепи, в которых преобразование ?¦еРгии осуществляется при наличии электродвижущей силы, ^бактеризуются в большинстве случаев постоянными вели-та"ами ЭДС Е и внутреннего сопротивления г (рис. 3.13, а). ? Н,е Элементы цепи называются активными. 3 Расчетных схемах источник энергии можно представить м.'¦ без внутреннего сопротивления, если это сопротивление Г- ° по сравнению с сопротивлением приемника (рис. 3.13, б). При г = О внутреннее падение напряжения Uo = 0, поэто напряжение на зажимах источника при любом токе равн ЭДС: U=E= const. Такой источник энергии с неизменнь¦ напряжением на его зажимах, не зависящим от внешнег сопротивления, называется источником ЭДС. В некоторых случаях источник электрической энергии расчетной схеме заменяют другой (эквивалентной) схемо (рис. 3.14, а), где вместо ЭДС Е источник характеризуется ег током короткого замыкания Л, а вместо внутреннего с противления в расчет вводится внутренняя проводимость g= 1/ Возможность такой замены можно доказать, раздел* равенство (3.16) на г: U/r=E/r-I, где U/r = Io — некоторый ток, равный отношению напряжени на зажимах источника к внутреннему сопротивлению; E/r = h ток короткого замыкания источника; I=U/R — ток приемник

2.Закон ома

Данный закон очень удобно применять для ветви электрической цепи. Позволяет определить ток ветви при известном напряжении между узлами, к которым данная ветвь подключена. Также позволяет буквально в одно действие рассчитать одноконтурную электрическую цепь.

При применении закона Ома предварительно следует выбрать направление тока в ветви. Выбор направления можно осуществить произвольно. Если при расчете будет получено отрицательное значение, то это значит, что реальное направление тока противоположно выбранному. Для ветви, состоящей только из резисторов и подключенной к узлам электрической цепиa и b (см. рис.) закон Ома имеет вид: Соотношение (1.15) написано в предположении, что выбрано направление тока в ветви от узла a к узлу b. Если мы выберем обратное направление, то числитель будет иметь вид: (Ub-Ua). Теперь становится понятно, что если в соотношении (1.15) возникнет ситуация, когда Ub>Ua то получим отрицательное значение тока ветви. Как уже упоминалось выше, это значит, что реальное направление тока противоположно выбранному. Примером практического применения данного частного случая закона Ома при расчетах электрических цепей является соотношение (1.18) для электрической цепи, изображенной на рисунке.

Для ветви содержащей резисторы и источники электрической энергии закон Ома принимает следующий вид: Соотношение (1.16) написано в предположении, что предварительно выбрано напавление тока от узла a к узлу b. При расчете алгебраической суммы ЭДС ветви следует знак "+" присваивать тем ЭДС, чье направление совпадает с направлением выбранного тока ветви (направление ЭДС определяется направлением стрелки в обозначении источника электрической энергии). Если направления не совпадают, то ЭДС берется со знаком "-". На рисунке есть примеры применения данного варианта закона Ома - соотношения (1.17) и (1.19)

Если необходимо рассчитать одноконтурную электрическую цепь с произвольным количеством источников электрической энергии и резисторов, то следует применять соотношение (1.16), имея ввиду что Ua=Ub.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]