
- •ACKNOWLEDGMENTS
- •TABLE OF CONTENTS
- •LIST OF TABLES
- •LIST OF FIGURES
- •INTRODUCTION
- •2.1.1 Structural Properties
- •2.1.2 Physical Properties
- •2.1.3 Electrical Properties of InN
- •2.1.3.1 Background Defects
- •2.1.4 Optical Properties of InN
- •2.2.1 Thermodynamic Models in Solid Solution
- •2.2.1.1 Regular Solution Model
- •2.2.1.2 Bonding in Semiconductor Solid Solutions Model
- •2.2.1.4 Strain Energy Model
- •2.2.1.5 First-Principal Models
- •2.2.2 Thermodynamic Analysis of InN
- •2.2.3 Phase Separation in InxGa1-xN
- •2.3.1 Growth Temperature and V/III Ratio
- •2.3.2 Nitrogen Source
- •2.4 Indium Nitride (InN) Growth Techniques
- •2.4.1 Chemical Vapor Deposition (CVD)
- •2.4.1.1 Metal-Organic Vapor Phase Epitaxy (MOVPE)
- •2.4.1.2 Hydride Vapor Phase Epitaxy (HVPE)
- •2.4.1.3 Plasma Enhanced Chemical Vapor Deposition (PECVD)
- •2.4.3 Atomic Layer Deposition (ALD)
- •2.5 Substrate Materials
- •2.5.1 Sapphire Substrate (Al2O3) (0001)
- •2.5.2 Silicon (Si) Substrate
- •2.5.4 Other Substrates
- •2.5.5 Buffer Layer
- •2.6 Summary for Growth of InN on Different Substrate
- •2.6.2 Growth on Silicon (Si) Substrate
- •2.6.3 Growth on Gallium Arsenide (GaAs) Substrate
- •2.6.4 Growth on Gallium Phosphorus (GaP) Substrate
- •2.7 Overview
- •THERMODYNAMIC ANALYSIS OF InN AND InXGa1-XN MOVPE GROWTH
- •3.1 Thermodynamic Analysis of InN and InxGa1-xN
- •3.1.1 Reaction Mechanism and Kinetics of InN MOVPE
- •3.2.1 Boundary Passivation Method with Hydrogen
- •5.1. Indium Nitride (InN) Growth Optimization
- •5.1.1. Substrate Selection
- •5.1.1.1. Sapphire (c-Al2O3 (0001))
- •5.1.1.2. Gallium Nitride (GaN/c-Al2O3 (0001))
- •5.1.1.3. Silicon (Si (111))
- •5.1.2. Substrate Preparation Procedure
- •5.1.3. Metal-Organic Vapor Phase Epitaxy (MOVPE) Reactor
- •5.1.4. Growth Chemistry and Conditions for InN Growth
- •5.1.5. Indium Nitride (InN) Growth and Optimization
- •5.1.5.1. Influence of Growth Temperature
- •5.1.5.2. Influence of Substrate Nitridation
- •5.1.5.3. Influence of N/In Ratio
- •5.1.5.4. Influence of Buffer Layer and Morphological Study
- •5.1.5.5. Influence of Pressure
- •5.1.5.6. Optical and Electrical Properties
- •5.1.5.7. Summary
- •5.1.6. Indium Nitride (InN) Droplet Formation
- •5.1.7. Annealing Effect
- •5.3. Inlet Tube Modification and Growth Results
- •CONCLUSIONS
- •LIST OF REFERENCES
- •BIOGRAPHICAL SKETCH
45
nitrides. For obtaining atomic reactive nitrogen, the N2 molecules are dissociated by the radio-frequency (rf)-plasma or the electron cyclotron resonance (ECR) method. Although the rf-plasma source is the most popular and the rf-radical source produces considerably fewer ions than an ECR source due to the higher plasma pressures [Hug95], it is well known that ion damage can still induce during the epitaxy [Pow93]. Some techniques to avoid such ion damage by an ion tapping system using the static electric field, have been tried [Bot95, Mol94, Iwa96]. The other serious problems induced by the plasma may be some contamination such as oxygen or carbon dioxide.
MOMBE is also one of the potential growth techniques where the advantages of both MOVPE and MBE can be utilized. Film can be grown relatively at low temperature by MOMBE and premature reaction of the precursors, a serious problem in MOVPE, is minimized due to the large mean free path of gaseous molecules.
2.4.3 Atomic Layer Deposition (ALD)
Atomic Layer Deposition (ALD) can be considered as a special mode of CVD. It is a surface deposition process that can be used for the controlled growth of epitaxial films, and the fabrication of tailored molecular structures on the surfaces of solid substrates. ‘Monatomic layers’ can be grown in sequence which is a characteristic feature of ALD. Therefore, the desired coating thickness can be produced simply by counting the number of reaction sequences in the process. The surface reconstruction of the monolayer formed in the reaction sequence will influence the saturation mechanism and the saturation density of the precursor.
The ALD reaction sequences are normally perform in an ‘effective overdosing’ condition to ensure a complete saturation of the surface reaction to form the monoatomic layer. Furthermore, such effective overdosing’ condition also provides good conformal