
- •1. Кинематика материальной точки. Система отсчета. Кинематические уравнения движения. Уравнение траектории.
- •2. Вектор перемещения. Скорость и ускорение как производные от радиус-вектора по времени. Тангенциальное и нормальное ускорения.
- •3. Элементы кинематики вращательного движения твердого тела. Угол поворота. Угловая скорость. Угловое ускорение. Связь линейных и угловых кинематических величин.
- •4. Понятие состояния в классической механике. Первый закон Ньютона – закон инерции. Инерциальные системы отсчета.
- •5. Масса и импульс. Сила. Второй закон Ньютона. Уравнение динамики материальной точки.
- •6. Механическая система. Внешние и внутренние силы. Третий закон Ньютона. Центр масс механической системы и закон его движения.
- •7. Момент силы и момент импульса. Уравнение моментов для материальной точки.
- •8. Импульс и момент импульса системы частиц. Замкнутая система материальных точек. Законы сохранения импульса и момента импульса.
- •9. Основное уравнение динамики вращательного движения твердого тела вокруг оси. Момент инерции.
- •10. Энергия, как единая мера различных форм движения материи. Работа. Вычисление работы переменной силы. Мощность.
- •11. Кинетическая энергия частицы и системы частиц. Связь кинетической энергии системы с работой действующих на нее сил.
- •12. Кинетическая энергия и работа при вращении твердого тела.
- •13.Консервативные и неконсервативные силы. Потенциальная энергия частицы и ее связь с силой поля.
- •14. Полная механическая энергия и закон ее изменения. Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.
- •15. Механический принцип относительности и преобразования Галилея. Классический закон сложения скоростей.
- •16. Постулаты специальной теории относительности (сто). Относительность понятия одновременности. Преобразования Лоренца.
- •17. Следствия из преобразований Лоренца: замедление хода времени, Лоренцево сокращение длины, релятивистский закон сложения скоростей.
- •18. Релятивистское преобразование импульса. Основное уравнение релятивистской динамики.
- •19. Релятивистское преобразование кинетической энергии. Полная энергия и энергия покоя. Выражение полной энергии через импульс. Взаимосвязь массы и энергии покоя.
- •20. Термодинамические параметры. Равновесные состояния и процессы. Уравнение состояния идеального газа. Термодинамические диаграммы равновесных изопроцессов.
- •22. Распределение Максвелла молекул идеального газа по скоростям теплового движения. Наиболее вероятная, среднеарифметическая и среднеквадратичная скорости теплового движения молекул.
- •23. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле.
- •24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.
- •25. Теплота и работа как функции процесса. Вычисление работы, совершаемой идеальным газом в различных процессах.
7. Момент силы и момент импульса. Уравнение моментов для материальной точки.
Момент
силы—
векторная физическая величина, равная
векторному произведению радиус-вектора
(проведённого от оси вращения к точке
приложения силы — по определению), на
вектор этой силы. Характеризует
вращательное действие силы на твёрдое
тело.
1 Н·м — момент силы, который производит сила 1 Н на рычаг длиной 1 м
Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:
Где r — радиус-вектор, проведенный из точки О в точку A, p=mv — импульс материальной точки (рис. 28); L — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к р.
Модуль
вектора момента импульса
Момент
импульса твердого тела относительно
оси есть сумма моментов импульса
отдельных частиц:
Момент
импульса твердого тела относительно
оси равен произведению момента
инерции тела относительно той же оси
на угловую скорость.
уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.
8. Импульс и момент импульса системы частиц. Замкнутая система материальных точек. Законы сохранения импульса и момента импульса.
Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Момент
импульса твердого тела относительно
оси есть сумма моментов импульса
отдельных частиц:
Момент
импульса твердого тела относительно
оси равен произведению момента
инерции тела относительно той же оси
на угловую скорость.
Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.
Замкнутая (изолированная) система материальных точек или материальная точка - это система, в которой отсутствуют внешние силы (или воздействие посторонних тел пренебрежимо мало).
В неинерциальных системах отсчета к внешним силам относят силы инерции. В таких системах всегда присутствуют внешние силы, то есть замкнутые системы возможны в случае инерциальных систем отсчета.
Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.
В
упрощённом виде: , если система находится
в равновесии.