Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
khimia / otvety_na_voprosy_56-64.doc
Скачиваний:
104
Добавлен:
16.04.2015
Размер:
344.58 Кб
Скачать

3. 1. Диссоциация комплексных соединений. Устойчивость комплексов. Лабильные и инертные комплексы

При растворении в воде комплексных соединений, обычно они распадаются на ионы внешней и внутренней сфер подобно cильным электролитам, так как эти ионы связаны ионогенно, в основном, электростатическими силами. Это оценивается как первичная диссоциация комплексных соединений.

K[Ag(CN) 2] ® К + + [Ag(CN) 2]

Вторичная диссоциация комплексного соединения – это распад внутренней сферы на составляющие ее компоненты. Этот процесс протекает по типу слабых электролитов, так как частицы внутренней сферы связаны неионогенно (ковалентной связью). Диссоциация носит ступенчатый характер:

[Ag(CN)2][AgCN] + CN

1 ступень

[AgCN]Ag++  CN

2 ступень

Для качественной характеристики устойчивости внутренней сферы комплексного соединения используют константу равновесия, описывающую полную ее диссоциацию называемую          константой нестойкости комплекса (Кн). Для комплексного аниона [Ag(CN)2] выражение константы нестойкости имеет вид:

        [Ag+] [СN]2

Кн = ——————

         [Ag(СN)2]

Чем меньше значение Кн, тем более устойчивой является внутренняя сфера комплексного соединения, то есть – тем меньше она диссоциирует в водном растворе. В последнее время вместо Кн используют значение константы устойчивости (Ку). Чем больше значение Ку, тем более стабильный комплекс.

          1

Ку = ——

         Кн

Константы устойчивости позволяют прогнозировать направление лигандообменных процессов.

В водном растворе ион металла существует в виде аквакомплексов: [Fe(H2О)6]2+ – гексааквожелезо, [Cu(H2О)4]2+  – тетрааквомедь.

При написании формул гидратированных ионов, координированные молекулы воды гидратной оболочки не указываем, но подразумеваем. Образование комплекса между ионом металла и каким–либо лигандом, рассматриваем как реакцию замещения молекулы воды во внутренней координационной сфере этим лигандом

[Mg (H2O) n ]z+      +  nLХ—                       [MLn ]z—nx     +   nH2О

Например:

[ Cu (H2O)4 ]2+  + 4NH3                       [ Cu (NH3)4 ] 2+  +  4H2O

Лигандообменные реакции протекают по механизму реакций SN–типа.

Значения констант устойчивости, приведенные в таблице, свидетельствуют о том, что за счет процесса комплексообразования происходит прочное связывание ионов в водных растворах, что указывает на эффективность использования данного типа реакций для связывания ионов особенно с полидентатными лигандами. В отличие от реакций ионного обмена образование комплексных соединений часто не является квазимгновенным процессом. Например, при взаимодействии железа (3) с нитрилотриметиленфосфоновой кислотой равновесие устанавливается через 4 суток. Для кинетической характеристики комплексных соединений используются понятия – лабильный (быстро вступающий в реакцию) и инертный (медленно вступающий в реакцию). Лабильными комплексами, по предложению Г.Таубе считаются такие, которые полностью обмениваются лигандами в течение 1 минуты при комнатной температуре и концентрации раствора 0,1 М. Необходимо четко различать термодинамические [прочный (устойчивый), непрочный (неустойчивый)] и кинетические [инертный и лабильный] понятия.

У лабильных ионов реакции замещения лигандов происходят быстро, устанавливается быстро равновесие. У инертных ионов реакции замещения лигандов протекают медленно.

Так, инертный комплекс [Co(NH3)6]2+ в кислой среде термодинамически неустойчив: константа неустойчивости равна 1025, а лабильный комплекс [HgJ4] 2— очень устойчив: константа неустойчивости равна 10—30. Лабильность комплексов Таубе связывает с электронной структурой центрального атома. Инертность комплексов свойственна главным образом ионам с незаконченной d – оболочкой. К инертным относятся комплексы Со, Cr. Цианидные комплексы многих катионов с внешним уровнем S2Р6 лабильны.

59.

Закон Гесса— основной законтермохимии, который формулируется следующим образом:

  • Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данноехимическое превращениев одну или в несколько стадий (при условии, чтотемпература,давлениеиагрегатные состояниявеществ одинаковы). Например, окислениеглюкозыв организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

Соседние файлы в папке khimia