Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
16-17 вопросы по геодезии.docx
Скачиваний:
26
Добавлен:
13.04.2015
Размер:
133.61 Кб
Скачать

Понятие о государственной геодезической сети и ее назначении

Опубликовано 02.03.2012 | Автор: admin

Государственная геодезическая сеть (ГГС) представляет собой систему надежно закрепленных на местности точек, координаты которых определены с достаточно высокой степенью точности в единой для всей страны системе координат.

Государственная геодезическая сеть имеет важнейшее науч­ное и народно-хозяйственное значение, в связи с чем пункты ГГС должны быть рассчитаны на длительный срок службы, а по точно­сти должны удовлетворять требованиям науки и решению самого широкого спектра производственных задач не только сегодняшне­го дня, но и достаточно отдаленного будущего.

История развития геодезии показывает, что с течением времени требования к точности построения ГГС непрерывно возрастают. Вместе с тем сама по себе ГГС, если ее не обновлять и не совершен­ствовать, постоянно стареет, утрачивает часть пунктов, теряет точ­ность в отдельных ее частях вследствие геодинамических процессов.

Для того, чтобы ГГС страны всегда находилась на уровне совре­менных требований, необходимо:

—             систематически проводить полевое обследование всех пунктов сети, восстанавливать или заново определять утраченные пункты сети;

—             периодически выполнять повторные или дополнительные измерения в значительной части сети, особенно в тех ее частях, ко­торые наиболее подвержены движениям земной коры;

—             повторять или дополнять измерения, проводимые для даль­нейшего совершенствования и повышения точности ГГС;

—             по мере накопления измерительной информации, совер­шенствования средств и методов измерения, пересматривать при­нципы построения ГГС.

основной принцип построения государственной геодезической сети

При создании государственной геодезической сети неизбежно возникают три основных вопроса, имеющие принципиальное значение: выбор схемы построения государственной геодезической сети на всей территории страны; установление плотности геодезических пунктов, а также точности определения взаимного положения смежных пунктов в сети. Каждый из этих вопросов необходимо рассматривать совместно, причем с двух точек зрения: с точки зрения решения основных научных задач геодезии, а также задач картографирования территории страны. Это связано с тем, что при решении этих задач предъявляются разные требования к опорной геодезической сети. Поэтому необходимо найти в определенном смысле оптимальный вариант построения сети, позволяющий на должном научном уровне и с требуемой точностью решать задачи обеих групп.

Используя методы космической геодезии, получают достаточно обобщенные, т. е. сглаженные характеристики фигуры и гравитационного поля всей Земли в целом. Более детально фигуру Земли в пределах территории одной страны или группы стран изучают путем создания астрономо-геодезических сетей, в которых выполняют комплекс геодезических, астрономических и гравиметрических измерений. До недавнего времени в странах с большой территорией астрономо-геодезические сети строились в виде рядов триангуляции, прокладываемых по направлениям меридианов и параллелей и образующих замкнутые полигоны. В результате совместной математической обработки всех видов измерений, выполняемых в астрономо-геодезической сети, получают высоты квазигеоида и его профили вдоль рядов триангуляции 1 класса. При этом внутри каждого полигона форма поверхности квазигеоида остается неизученной. Для устранения этого недостатка необходимо создавать на территории страны не полигональную, а сплошную астрономо-геодезическую сеть с более или менее равномерным распределением пунктов по всей территории.

Для геодезического обеспечения топографических съемок, выполняемых в целях картографирования всей территории страны, необходимо на ее поверхности построить сплошную опорную геодезическую сеть. При этом расстояния между соседними пунктами должны быть гораздо меньше, чем в астрономо-геодезической сети, особенно при крупномасштабном картографировании.

Таким образом, для решения как научных, так и практических задач геодезии и картографии необходимо иметь на территории страны сплошную государственную геодезическую сеть с выделенной  в  ней   астрономо-геодезической  сетью  как главной и наиболее точной, используемой для решения как практических, так и научных задач геодезии, в том числе, связанных с детальным изучением фигуры и гравитационного поля Земли в пределах территории одной или группы стран.

В высшей геодезии сложился и хорошо оформился определенный принцип или схема построения государственной геодезической сети, предназначенной для решения как научных, так и инженерно-технических задач народнохозяйственного значения. Государственную геодезическую сеть создают поэтапно, постадийно, соблюдая принцип перехода от общего к частному. Сначала строят главную, т. е. астрономо-геодезическую сеть, состоящую из крупных геодезических построений в виде либо замкнутых полигонов, либо сравнительно больших треугольников. Измерения в астрономо-геодезической сети выполняют с наивысшей возможной точностью. Затем данную сеть принимают за исходную и на ее основе строят геодезическую сеть второго порядка с более детальными геометрическими построениями и с меньшей относительной точностью измерений, однако, с сохранением величины абсолютной ошибки определения взаимного положения смежных пунктов, как и в сети первого порядка. При этом имеются в виду среднестатистические значения ошибок. Далее сеть второго порядка принимают за исходную и на ее основе создают сеть третьего порядка с еще большей детализацией геометрических построений при меньшей относительной точности измерений, но, как и ранее, с той же абсолютной ошибкой определения взаимного положения смежных пунктов. Так поступают до тех пор, пока не будет построена  геодезическая  сеть с требуемой плотностью  пунктов.

Таким образом, при соблюдении принципа перехода от общего к частному государственную геодезическую сеть неизбежно подразделяют на геодезические сети разных классов 1, 2, 3... Число классов рекомендуется свести к минимуму для уменьшения влияния ошибок исходных данных на уравненные элементы сети низшего класса.

основные методы создания государственной геодезической сети

Согласно Инструкции основными методами построения государственной геодезической сети являются триангуляция, полигонометрия и трилатерация. Выбор того или иного метода в каждом конкретном случае определяется требуемой точностью построения сети и экономической эффективностью.

Метод триангуляции. Принято считать, что метод триангуляции впервые был предложен голландским ученым Снеллиусом в 1614 г. Этот метод широко применяется во всех странах. Сущность метода заключается в следующем. На командных высотах местности закрепляют систему геодезических пунктов, образующих сеть треугольников (рис. 13). В этой сети определяют координаты исходного пункта А, измеряют горизонтальные углы в каждом треугольнике, а также длины b  и азимуты а базисных сторон, задающих масштаб и ориентировку сети по азимуту.

Сеть триангуляции может быть построена в виде отдельного ряда треугольников, системы рядов треугольников, а также в виде сплошной сети треугольников. Элементами сети триангуляции могут служить не только треугольники, но и более сложные фигуры: геодезические четырехугольники и центральные системы.

Основными достоинствами метода триангуляции являются его оперативность и возможность использования в разнообразных физико-географических условиях; большое число избыточных измерений  в сети,  позволяющих непосредственно  в  поле  осуществлять надежный контроль всех измеренных величин; высокая точность определения взаимного положения смежных пунктов в сети, особенно сплошной. Метод триангуляции получил наибольшее распространение при построении государственных геодезических сетей.

 

 Рис. 13. Сеть триангуляции

            Рис.   14.  Полигонометрический  ход

 

Метод полигонометрии. Этот метод известен также давно, однако применение его при создании государственной геодезической сети сдерживалось до недавнего времени трудоемкостью линейных измерений, выполняемых ранее с помощью инварных проволок. Начиная примерно с шестидесятых годов текущего столетия, одновременно с внедрением в геодезическое производство точных свето и радиодальномеров, метод полигонометрии получил дальнейшее развитие и стал широко применяться при создании геодезических сетей.

Сущность этого метода состоит в следующем. На местности закрепляют систему геодезических пунктов, образующих вытянутый одиночный ход (рис. 14) или систему пересекающихся ходов, образующих сплошную сеть. Между смежными пунктами хода измеряют длины сторон s,-, а на пунктах — углы поворота р. Азимутальное ориентирование полигонометрического хода осуществляют с помощью азимутов, определяемых или заданных, как правило, на конечных пунктах его, измеряя при этом примычные углы у. Иногда прокладывают полигонометрические ходы между пунктами с заданными координатами геодезической сети более высокого класса точности.

Метод полигонометрии в ряде случаев, например, в залесенной местности, на территории крупных городов и т. п. оказывается более оперативным и более экономичным, чем метод триангуляции. Это обусловлено тем, что в таких условиях на пунктах триангуляции строят более высокие геодезические знаки, чем на пунктах полигонометрии, поскольку в первом случае следует обеспечить прямую видимость между гораздо большим числом пунктов, чем во втором. Постройка ,же геодезических знаков является самым дорогостоящим видом работ при создании геодезической сети (в среднем 50—60 % всех затрат).

Следует отметить также присущие методу полигонометрии недостатки:

сети полигонометрии, особенно одиночные ходы, являются гораздо менее жесткими геометрическими построениями, чем сети и ряды триангуляции, так как в полигонометрии число геометрических связей между пунктами существенно меньше, чем в триангуляции (при одинаковом числе пунктов в обоих случаях) ;

число избыточных измерений, а следовательно, и число условных уравнений, в полигонометрии гораздо меньше, чем в триангуляции с таким же числом пунктов, а это значит, что при прочих равных условиях сеть полигонометрии будет менее точной, чем сеть триангуляции;

контроль полевых измерений в полигонометрии несравненно хуже, чем в триангуляции, так как число условных уравнений в полигонометрии гораздо1 меньше, чем в триангуляции с таким же числом пунктов.

Это свидетельствует о том, что при создании опорных геодезических сетей высшего класса точности возможности метода полигонометрии по сравнению с таковыми в триангуляции ограничены.

При создании же геодезических сетей последующих классов метод полигонометрии в силу присущей ему оперативности, особенно при использовании современных свето- и радиодальномеров с цифровой индикацией результатов измерений, получил широкое применение.

Метод трилатерации. Данный метод, как и метод триангуляции, предусматривает создание на местности геодезических сетей либо в виде цепочки треугольников, геодезических четырехугольников и центральных систем, либо в виде сплошных сетей треугольников, в которых измеряются не углы, а длины сторон. В трилатерации, как и в триангуляции, для ориентирования сетей на местности должны быть определены азимуты ряда сторон.

По мере развития и повышения точности свето- и радиодальномерной техники измерений расстояний метод трилатерации постепенно приобретает все большее значение, особенно в практике инженерно-геодезических работ.

При создании государственных геодезических сетей 1—2 классов метод трилатерации в СССР не применяется. Это объясняется следующими причинами:

1.  Контроль измерения расстояний и построения сетей трилатерации слишком  слаб,  а  иногда и  вовсе отсутствует,  что недопустимо   в   точных   геодезических   построениях.   В   самом деле, например, в треугольнике с измеренными сторонами контроль измерения расстояний полностью отсутствует, так как при таких измерениях в треугольнике не возникает ни одного условного уравнения; в геодезическом четырехугольнике и центральной   системе   с   измеренными   сторонами   возникает   всего лишь по одному условному уравнению, в то время как в таких же фигурах триангуляции с измеренными углами  возникает во много раз больше независимых условных уравнений: в   геодезическом   четырехугольнике   четыре,   а   в центральной системе еще больше.

2.  В технико-экономическом отношении метод трилатерации также уступает методу триангуляции.  При прочих равных условиях штат бригады при линейных измерениях и транспортные расходы в несколько раз больше, чем при угловых измерениях,   поскольку   приходится   на   конце   каждой   измеряемой с пункта линии устанавливать отражатель, а затем при переезде  со   светодальномером   на  другой  пункт   перевозить  всех рабочих с отражателями с одних пунктов на  другие,  чего  не требуется делать при угловых измерениях.

3.   При соизмеримой точности угловых и линейных измерений точность передачи азимутов в рядах и сетях трилатерации существенно ниже, чем в сетях триангуляции.

Линейно-угловые геодезические сети. Под линейно-угловой сетью понимают такую разновидность триангуляции или трилатерации, в которой одновременно измеряют как углы, так и стороны треугольников. В этой сети через определенное число треугольников должны определяться азимуты Лапласа, необходимые для ее ориентирования. Линейно-угловые сети строят только в тех случаях, когда требуется создать геодезическую сеть с максимально высокой точностью, так как затраты труда, средств и времени на ее создание гораздо большие, чем при построении аналогичной сети триангуляции или трилатерации. Для того чтобы при создании линейно-угловых сетей получить наибольший эффект от совместного использования угловых и линейных измерений необходимо, чтобы средняя квадратическая ошибка измерения направлений, выраженная в радианной мере mNjp, была равна относительной средней квадратической ошибке измерения длин сторон mS/S, т. е. чтобы при измерениях соблюдалось равенство.

 геодезические сети и их назначение

Геодезической сетью называют систему закрепленных на местности точек земной поверхности, положение которых определено в общей для них системе координат и высот.

Геодезические сети могут создаваться как на малых, так и на огромных площадях земной поверхности. По территориальному признаку их можно подразделить на глобальную (общеземную) геодезическую сеть, покрывающую весь земной шар; национальные (государственные) геодезические сети, создаваемые в пределах территории каждой отдельной страны в единой системе координат и высот, принятой в данной стране; сети сгущения, предназначенные для создания съемочного обоснования топографических съемок; местные геодезические сети, т. е. сети на локальных участках, используемые для решения различных задач в местной системе координат.

По геометрической сущности различают плановые, высотные и пространственные геодезические сети. В плановой сети в результате обработки измерений вычисляют координаты пунктов на принятой поверхности относимости (на поверхности эллипсоида или на плоскости); в высотной (нивелирной) сети получают высоты пунктов относительно отсчетной поверхности, например, поверхности квазигеоида; в пространственных сетях из обработки измерений определяют взаимное положение пунктов в трехмерном пространстве.

Глобальная геодезическая сеть создается в настоящее время методами космической геодезии с использованием наблюдений ИСЗ, поэтому ее часто называют спутниковой или космической геодезической сетью. Положение пунктов в этой сети вычисляют в геоцентрической системе прямоугольных координат XYZ, начало которой совмещено с центром масс Земли, ось Z— с осью вращения ее, а плоскость ZY—с плоскостью начального меридиана. Глобальную геодезическую сеть используют для решения научных и научно-технических проблем и задач высшей геодезии, геодинамики, астрономии и других наук. К числу таких проблем и задач относятся, например, следующие:

уточнение фундаментальных геодезических  постоянных;

изучение фигуры и гравитационного поля Земли;

определение движений полюсов Земли;

задание единой для всей Земли системы геоцентрических пространственных прямоугольных или геодезических координат;

определение положения референц-эллипсоидов разных стран относительно центра масс Земли;

изучение перемещений и деформаций литосферных плит земной коры;

изучение закономерностей изменения во времени координат пунктов общеземной геодезической сети вследствие динамики земной поверхности и приведение их мгновенных значений к определенной эпохе, например, к эпохе 2000 г.

Глобальная геодезическая сеть должна непрерывно совершенствоваться для достижения наивысшей точности определения «мгновенного» положения ее пунктов в геоцентрической системе координат. По мере повышения точности глобальной геодезической сети будут постепенно расширяться возможности решения новых научных проблем и задач геодезии, прикладной космонавтики, геодинамики, астрономии и многих других наук.

Национальные геодезические сети подразделяются, как отмечалось выше, на три вида: государственную геодезическую сеть (плановую), государственную нивелирную сеть (высотную), государственную гравиметрическую сеть.

Государственная геодезическая сеть предусматривает определение с наивысшей точностью взаимного положения геодезических пунктов в плановом отношении на избранной поверхности относимости (на референц-эллипсоиде или плоскости); высоты пунктов сети определяются с гораздо более низкой точностью, особенно в горных районах.

Государственная нивелирная сеть служит для определения с наивысшей точностью высоты каждого пункта относительно поверхности квазигеоида; плановое положение пунктов этой сети  на  поверхности  относимости  определяется  приближенно.

Государственная гравиметрическая сеть предназначена для определения с наивысшей точностью ускорений силы тяжести на пунктах; положение пунктов этой сети в плановом и высотном отношении должно быть определено с требуемой точностью.

Государственные геодезические сети, создаваемые на территории каждой отдельной страны, предназначаются для следующих целей:

детального изучения фигуры и гравитационного поля Земли, их изменений во времени  (в пределах территории страны);

распространения единой системы координат и высот на всей территории страны;

картографирования территории страны в разных масштабах в единой системе координат и высот;

решения геодезическими методами разного рода научных и инженерно-технических задач народнохозяйственного значения.

В силу специфических средств и методов построения геодезических сетей разного вида пункты плановой геодезической сети обычно располагают на наиболее высоких участках местности; пункты нивелирной сети — на равнинных и холмистых участках местности, в долинах рек и т. п.

Государственные геодезические сети всех трех видов строятся раздельно, но они тесно взаимосвязаны между собой и дополняют одна другую. Отдельные пункты могут быть общими для всех трех видов сетей, что позволяет более эффективно решать многие задачи геодезии, геодинамики и т. п.

В связи с тем, что государственные геодезические сети имеют важное научное и народнохозяйственное значение, они должны быть надежно закреплены на местности, рассчитаны на длительный срок службы, а по точности должны удовлетворять требованиям науки, задачам народного хозяйства страны, причем не только ближайшего, но и сравнительно отдаленного будущего.

История развития геодезии показывает, что с течением времени требования к точности построения государственных геодезических сетей непрерывно возрастают. Вместе с тем, сама по себе государственная геодезическая сеть, если ее систематически не обновлять и не совершенствовать, постепенно стареет, утрачивается часть пунктов, теряется точность в отдельных ее частях, особенно из-за современных движений земной коры.

Для того чтобы государственные геодезические сети страны всегда находились на уровне современных требований, а также требований ближайшего будущего, необходимо:

систематически проводить полевое обследование (осмотр) всех пунктов сети, восстанавливать или заново определять утраченные пункты;

периодически, например, через 25—30 лет выполнять повторные или дополнительные измерения в значительной или, во всяком случае, в той части сети, которая наиболее сильно подвержена деформациям из-за современных движений земной поверхности или вследствие других причин;

повторные или дополнительные измерения, проводимые для дальнейшего совершенствования и повышения точности государственной   геодезической  сети,  необходимо  осуществлять  на базе новейших достижений в области высокоточной измерительной техники и методов измерений;

по мере накопления новой измерительной информации в результате повторных или дополнительных измерений на значительной части территории необходимо примерно через 25—30 лет заново выполнять повторное уравнивание сети как плановой, так и высотной, с целью получения новых, более точных значений координат и высот, относящихся к данной эпохе наблюдений.

При создании современных государственных геодезических сетей выполняют комплекс основных геодезических работ, которые включают в себя: проектирование геодезических сетей, рекогносцировку пунктов, постройку геодезических знаков, закладку подземных центров и реперов; выполнение угловых и линейных измерений; определение астрономических широт, долгот и азимутов; производство нивелирных работ; измерение ускорений силы тяжести, наблюдений ИСЗ и т. п. и, наконец, математическую обработку результатов измерений.

В последние годы достигнуты значительные успехи в деле повышения точности определения координат пунктов по результатам наблюдений ИСЗ. В связи с этим наблюдения ИСЗ начинают все шире использоваться при создании государственных геодезических сетей высокой точности.

Для того чтобы государственные геодезические сети могли служить интересам науки и народного хозяйства страны в течение длительного времени, их необходимо строить на строго научной основе, причем с наивысшей точностью, достигаемой в массовых измерениях при использовании новейших методов и высокоточной измерительной техники.

Местные геодезические сети. В ряде случаев на локальных участках местности необходимо решать сложные научные и инженерно-технические задачи, требующие определения взаимного положения точек в плане и по высоте с наивысшей точностью на каждый момент времени. В этих случаях создают специальные геодезические сети предельно высокой точности и выполняют в них прецизионные измерения повторно через определенные интервалы времени. Математическую обработку измерений в таких сетях выполняют в местной системе координат, подбираемой таким образом, чтобы редукционные поправки за переход от измеренных величин к их проекциям на местную поверхность относимости были как можно меньше. Такие сети используют, например, в сейсмоактивных районах для поиска предвестников и последующего прогноза крупных землетрясений, при строительстве и эксплуатации мощных радиотелескопов, ускорителей элементарных частиц, гидростанций и т. д.

Рис. 15. Комбинированная геодезическая сеть: / — триангуляция;   — полигонометрия;  — трилатерация

 

Ошибки в обоих случаях должны вычисляться по свободным членам условных уравнений (по невязкам). При невыполнении этого равенства линейно-угловая сеть по сравнению с аналогичной сетью триангуляции или трилатерации не дает ощутимого выигрыша в точности.

Комбинированные геодезические сети. При выполнении геодезических работ встречаются случаи, когда значительные по площади участки того или иного района характеризуются либо резко различными формами рельефа (например, один участок— равнина, а соседний является горным), либо резко различным растительным покровом (например, один участок покрывают болота, заросшие травой и мелким кустарником, а на соседнем растет высокий хвойный лес) и т. д. В таких случаях по технико-экономическим соображениям на одном из участков (там, где это экономически более выгодно), геодезическую сеть (рис. 15) создают методом триангуляции, на другом — полигонометрии, на третьем — методом трилатерации и т. д. Другими словами, на территории района с резко различными условиями создают так называемую комбинированную геодезическую сеть.

Схема и методы построения комбинированных геодезических сетей могут быть разными и должны выбираться с учетом конкретных условий тех районов, в которых такие сети будут строить.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]