Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biotekhnologia_12_-_18.docx
Скачиваний:
21
Добавлен:
12.04.2015
Размер:
50.88 Кб
Скачать

13. Промышленные ферментные препараты.

Использование микробных ферментов в некоторых отраслях промышленности началось более 70 лет назад. Большую часть, составляют гидролазы (реакции гидролиза), так как именно они являются основными в промышленной биотехнологии. От общего количества потребляемых ферментов 99% выпуска приходится на 16 препаратов.

К амилолитическим ферментам относятся L-амилаза, ß-амилаза, глюкоамилаза. Их действие проявляется при гидролизе крахмала и гликогена. Крах­мал при гидролизе сначала расщепляется на более простые полисахариды - дек­стрины, а затем - до глюкозы.

Эти ферменты применяются в спиртовой промышленности, хлебопечении.

Протеолитические ферменты относятся к гидролазам, образуя группу пептидгидролаз. Их действие заключается в ускорении гидролиза пептидных связей в белках и пептидах. Важная их особенность - выборочный, селективный характер действия на пептидные связи в белковой молекуле. Например, пепсин действует только на связь с ароматическими аминокислотами, трипсин - только на связь между аргинином и лизином. Из них рН 1,5-3,7 имеют кислые протеазы; рН 6,5-7,5 - протеазы; рН> 8,0 - щелочные протеазы.

Применение протеаз широкое: мясная промышленность для умягчения мя­са, кожевенная промышленность - при обезволошивании (удаление волосяного покрова) и размягчении шкур; кинопроизводство - для растворения желатинового слоя на пленках при их регенерации; парфюмерия - при создании добавок в зуб­ную пасту, кремы, лосьоны, промышленность синтетических моющих средств - при применении моющих добавок для удаления загрязнений белковой природы; медицина - при лечении воспалительных процессов, ожогов, тромбозов.

Пектолитические ферменты объединены в одну группу по внешнему проявлению своего действия - уменьшению молекулярной массы и снижению вязкости пектиновых веществ (пектин - пектиновые кислоты и протопектин) представителей полисахаридов. Они содержатся во фруктах, корнеплодах, стеб­лях (лен). Пектиновые вещества имеют молекулярную массу от 20000 до 200000. Все пектиназы делятся на два вида - гидролазы и трансэлиминазы. Применение в текстильной промышленности - вымачивание льна перед его переработкой, в виноделии - осветление вин, уничтожение мутности, в консервировании - при приготовлении фруктовых соков.

Целлюлолитические ферменты очень специфичны, их действие прояв­ляется лишь в деполимеризации молекул целлюлозы, обычно они действуют в виде комплекса, который в целом доводит гидролиз целлюлозы до глюкозы. Ис­пользование их очень перспективно в гидролизной промышленности - это полу­чение глюкозы из целлюлозы; в медицинской - выделение лекарственных ве­ществ (стероидов) из растений; в пищевой - улучшение качества растительных масел; в сельском хозяйстве - как добавки в комбикорма для жвачных животных. В мире производится около 530 т протеаз, 350 т глюкоамилазы, 350 т L-амилазы, 70 т глюкозоизомеразы.

14. Факторы, влияющие на синтез ферментов.

Существует мнение, что из клеток микроорганизмов можно выделить любые из известных ферментов. Большинство микроорганизмов способно расти на относительно простых и дешевых питательных средах. Имеется возможность усиливать способность микроорганизмов к биосинтезу ферментов с помощью селекции, получая высокопродуктивные мутантные формы. Биосинтез ферментов в растущих культурах можно регулировать технологическими приемами. Все это послужило толчком к бурному развитию микробиологической технологии ферментов в Японии, США, с начала 50-х годов в СССР.

Состав и количество синтезируемых клетками ферментов зависит главным образом от наследственных свойств данного организма, так как структура каждого образующегося в клетке белка определяется соответствующим геном. В то же время ген как единица наследственности способен изменяться, делиться и расщепляться под влиянием внешней среды, а также в результате направленных мутаций искусственного характера. Решение задачи получения промышленно ценных штаммов мутантов с измененными генетическими свойствами успешно осуществляется путем селекции с использованием мутагенных факторов, таких, как ионизирующие и неионизирующие излучения, изотопы, актинофаги, антибиотики, химические соединения, обладающие высокой преобразующей способностью по отношению к наследственным элементам клетки.

Несмотря на определяющую роль генетического фактора в биосинтезе ферментов, производительность существующих технологических процессов по каждому ферменту не в последнюю очередь зависит от состава питательной среды, имея в виду наличие в ней не только источников углерода, азота, фосфора и других элементов, но и веществ, играющих роль индукторов или репрессоров биосинтеза данного конкретного фермента или их групп. Хотя механизм этого явления не вполне изучен, сам факт должен в максимальной степени учитываться технологами в ходе биосинтеза.

Однако не только наличие индуктора способно увеличить выход фермента; не менее важно подыскание оптимального для биосинтеза фермента состава питательной среды и оптимальных условий культивирования.

Для интенсификации процесса роста и синтеза ферментов часто добавляют всевозможные вытяжки или экстракты, содержащие дополнительные факторы роста. К ним относятся, прежде всего, аминокислоты. Они легко проникают внутрь клетки и специфически влияют на образование фермента. Механизм их действия, вероятно, заключается в компенсации недостающих свободных внутриклеточных аминокислот, необходимых для синтеза фермента. Факторами роста являются также пуриновые основания и их производные, РНК и продукты ее гидролиза.

Все рассмотренные факторы должны учитываться при составлении питательных сред для культивирования продуцентов ферментов. В промышленных средах в качестве источников органического углерода и азота чаще всего используют различные сорта крахмала (картофельный, кукурузный, рисовый), кукурузный экстракт, соевую муку, гидролизаты биомассы дрожжей и т. д. Мирокоорганизмы для своего роста могут утилизировать и минеральные соединения азота, которые в конечном счете превращаются в аммиак, необходимый для синтеза слож­ных азотсодержащих органических соединений.

Существенное влияние оказывают минеральные соли Mg2"1", Са2+, Mn2+, Zn2+, Fe2+, Cu2+ и некоторых других металлов. Однако о механизмах их действия известно немного. Некоторые из них входят в состав ряда ферментов, ионы Са повышают устойчивость а-амилазы, ионы Fe и Mg активизируют и стабили­зируют протеолитические ферменты; Fe2+ и Си2+ участвуют в реакциях, связанных с утилизацией и превращением энергии.

Оптимальный состав питательной среды для каждого про­дуцента может быть определен двумя способами: методом эмпирического подбора и с использованием математических методов оптимизации, последний подход становится в последние годы преимущественным благодаря применению ЭВМ.

С точки зрения характера процесса культивирования микроорганизма-продуцента все технологические процессы производства ферментных препаратов делятся на две принципиально отличные группы: в первом случае ферментация ведется глубинным методом в жидкой питательной среде, во втором используется поверхностная культура, растущая на специально подготовленной рыхлой и увлажненной питательной среде.

Иммобилизация ферментов - это перевод их в нерастворимое состояние с сохранением (частичным или полным) каталитической активности.

Для получения иммобилизованных ферментов обычно применяют следующие методы:

1. Ковалентные присоединение молекул ферментов к водонерастворимому носителю, в качестве которого используют как органические (природные и синтетические) полимеры, так и неорганические материалы. К первым относятся целлюлоза, хитин, агароза, декстрины, бумага, ткани, полистирол, ионообменные смолы и так далее. Ко вторым - пористое стекло, силикагели, силохромы, керамика, металлы и другие.

2. Захват фермента в сетку геля или полимера.

3. Ковалентная сшивка молекул фермента друг с другом или с инертными белками (при помощи би - или полифункционального реагента).

4. Адсорбция фермента на водонерастворимых носителях (часто на ионитах).

5. Микрокапсулирование (захват раствора фермента в полупроницаемые капсулы размером 5-300 мкМ). В результате иммобилизации ферменты приобретают преимущества гетерогенных катализаторов. Их можно удалять из реакционной смеси и отделять от субстратов и продуктов ферментативной реакции простой фильтрацией.

Иммобилизованные ферменты более устойчивы к внешним воздействиям, чем растворимые ферменты.

Принцип иммобилизации был применен не только к ферментам, но и к их субстратам - веществам, имеющим избирательное средство к ферментам. Это позволило создать метод выделения и очистки ферментов, основанный на хроматографии по сродству. Облегчилось выделение чистых ферментов.

Иммобилизация клеток обычно проводится их адсорбцией на водонерастворимых носителях (часто на ионообменных смолах), ковалентной сшивкой с помощью бифункциональных реагентов (например, глутарового альдегида) или захвата их в полимер, как правило, с последующим формованием в виде частиц определенного размера и конфигурации.

Иммобилизация целых клеток микроорганизмов предотвращает их размножение и обычно увеличивает сохранность и срок работы в качестве катализатора по сравнению с необработанными клетками.

15. Применение ферментативных препаратов.

Ферменты немикробного происхождения находят применение сравнительно реже в силу различных причин, в частности:

  1. низкой лабильности;

  2. дороговизны;

  3. сезонности получения и других факторов.

Но в ряде случаев, в отсутствие микробного аналога, для коммерческих целей выделяют ферменты растительного и животного происхождения. Примерами таких ферментов могут служить ренин животного происхождения, фицин выделенный из инжира, папаин и др. Для получения в производственном масштабе ферментов растительного и животного происхождения в последнее время с успехом используют культивирование тканей и отдельных органов. Предположительно этот метод должен значительно удешевить и соответственно увеличить удельную долю коммерческих ферментов растительного происхождения.

Хотя промышленные ферменты иногда реализуются в виде технических препаратов, определенная их часть подвергается экстракции и очистке. При этом решается несколько задач: удаляют токсичные и нежелательные метаболиты и микроорганизмы, стандартизуют активность. Таким образом, обеспечивается более высокое качество препарата и его стабильность, также можно придать препарату желаемые аромат и цвет. Главная трудность возникает из-за неоднородного состава культуральных жидкостей, которые часто содержат большие количества коллоидов и имеют высокую вязкость.

Использование ферментов с детерагентами. Все микробные протеазы можно разделить на три класса: сериновые протеазы, металлопротеазы и кислые протеазы. Сериновые и металлопротеазы образуются бактериальными культурами, кислые протеазы образуют микроскопические грибы.

  • Сериновые и металлопротеазы. Эта группа ферментов довольно широко распространена среди бактерий.

Металлопротеазы используются в пивоваренной и спиртовой промышленности. При производстве пива использование протеаз связано с предотвращением образования мути, являющейся результатом выпадения в осадок белковых компонентов пива. Кроме металлопротеаз для этой цели используются растительные ферменты: бромелин и папаин.

  • Кислые протеазы. Ферменты этого типа встречаются у бактерий, но преобладают у высших грибов. Чаще всего эти ферменты, ввиду их способности коагулировать молоко, используются как заменители реннина (фермент получаемый из сычуга молодняка жвачных).

У свертывающих молоко ферментов коагулирующая активность должна преобладать над протеолитической активностью. Сущность процесса коагуляции заключается в образовании комплекса казеина с ионами Са2+. Сычуг — экстракт желудков телят содержит фермент ренин, который считается наиболее подходящим для этой цели протеолитическим ферментом. Замена дорогостоящего и дефицитного сычужного фермента на дешевый и доступный фермент микробного происхождения является фактором, определяющим дальнейшее развитие сыродельной промышленности.

Грибные протеазы широко используются для деградации клейковины до постоянного уровня. Это позволяет стандартизовать операцию процесса хлебопечения и сократить периоды замешивания и выдержки..

В ближайшем будущем значительный рост использования ферментных препаратов связан с возможностью ферментативного гидролиза лигноцеллюлозных субстратов с целью получения сахара для пищевых целей. В этом направлении ведется большая работа: селективно отобрано свыше 200 культур микроскопических грибов, характеризующихся суперсинтезом внеклеточных целлюлаз; получено более 20 бактериальных культур-трансформантов, осуществляющих синтез отдельных компонентов целлюлаз (в основном эндоглюканазы); налажены технологии, позволяющие производить около 50 разных коммерческих препаратов целлюлаз, отличающихся составными целлюлазными активностями, разработаны различные технологии предобработки лигноцеллюлозных материалов, увеличивающие выход глюкозы в результате ферментативного гидролиза и др. Существующее положение вселяет надежду на то, что в ближайшем будущем эта важнейшая проблема будет все-таки решена. В таком случае ожидается массовый выпуск разных типов целлюлаз (термостабильных, действующих в щелочной среде; целлюлаз, обогащенных отдельными компонентами, и др.) в количестве, превосходящем все существующие масштабы современной ферментной индустрии.

Что касается производства ферментных препаратов высокой чистоты, то это магистральное направление всей отрасли, тем более что за последнее десятилетие значительно усовершенствованы методы очистки ферментов в промышленном масштабе. Это способствовало более широкому использованию ферментов в медицине, хотя надо отметить, что число используемых в медицинской практике ферментов высокой степени чистоты не превышает нескольких десятков.

Иммобилизованные ферменты. Лет 20-25 тому назад считалось, что использование иммобилизованных ферментов может коренным образом изменить ферментную индустрию, в особенности проблемы, связанные с дороговизной и сложностью выделения ферментов. Иммобилизованные ферменты нашли самое разнообразное использование в медицине, фармацевтической, химической и пищевой промышленности, в аналитических целях, в качестве ферментных электродов для определения концентрации Сахаров, аминокислот и других соединений. Кроме того, возможность использования иммобилизованных ферментов привела к созданию таких новых направлений, как радиоиммунный и ферментативный иммуносорбентный анализ.

Преимущества иммобилизованных ферментов:

  • легко отделяются от реакционной среды и могут быть использованы повторно;

  • проявляют повышенную стабильность к экстремальным условиям и сохраняют активность в течение более длительного времени;

  • использование иммобилизованных ферментов позволяет разрабатывать непрерывные технологии;

  • методами иммобилизации возможно создание мультиферментных иммобилизованных композиций, это, в свою очередь, позволяет осуществлять последовательные ферментные реакции разных процессов.

Иммобилизованные ферменты характеризуются и некоторыми недостатками. В результате иммобилизации в ряде случаев наблюдается уменьшение удельной активности системы. Еще одним недостатком иммобилизованных ферментов является стоимость иммобилизации, которая может оказаться неприемлемо высокой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]