Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria_mn.doc
Скачиваний:
85
Добавлен:
02.04.2015
Размер:
957.44 Кб
Скачать

12. Классификация функций выбора

Обозначим  - множество всех возможных функций выбора. Простейшая классификация различает следующие подмножества  :

а)   >0 – подмножество функций непустого выбора, т.е. таких

функций, выбор по которым содержит хотя бы один элемент;

б)  1 – подмножество функций однозначного выбора, т.е. таких функций, выбор по которым содержит ровно один элемент.

Ясно, что 1   >0   .

Приведем без доказательства следующие теоремы о функциях выбора.

ТЕОРЕМА 1. Бинарное отношение R порождает функцию непустого выбора, основанную на механизме доминирования или блокировки тогда и только тогда, когда R ациклично.

ТЕОРЕМА 2. Бинарное отношение R порождает функцию однозначного выбора, основанную на механизме доминирования или блокировки тогда и только тогда, когда R ациклично и слабополно.

Более тонкая классификация функций выбора основывается на наличии или отсутствии у них следующих свойств.

1) H: (Y  X)  C(X)  Y  C(Y) – свойство наследования.

Наличие этого свойства означает, что элемент b, выбираемый на множестве Х, будет также выбран на любом более узком содержащем его подмножестве Y. Иными словами, при переходе к рассмотрению элемента b на более узком множестве, его свойство быть выбранным сохраняется (наследуется).

2) C: X = Y  Z (C(Y)  C(Z))  C(X) – свойство согласия.

Наличие этого свойства означает, что элемент b, выбираемый одновременно на любых составных частях некоторого множества Х, будет также выбран на всем Х.

3) О: (C(X)  Y  X)  (C(Y) = C(X)) – свойство отбрасывания или независимости от отбрасывания отвергнутых вариантов.

Оно означает, что выбор на любом множестве Y, содержащем выбор C(X) совпадает с C(X). Т.е. выбор не зависит от того, сколько "плохих" элементов пришлось отбросить при выборе.

4) K: (Y  X)  (C(Y) = Y (X)) – свойство строгого нас-ледования (константности).

Перечислим ряд закономерностей, которые вытекают из названных свойств функций выбора.

Пусть (H), (C), (O), (K)   – множества функций выбора, удовлетворяющих соответствующим свойствам.

ТЕОРЕМА 3. (K)  (H)  (C)  (O). Т.е. если функция выбора обладает свойством K, то она обладает одновременно свойствами H, C, O.

ТЕОРЕМА 4. Для того чтобы функции выбора порождалась бинарным отношением R посредством механизма доминирования или блокировки, необходимо и достаточно, чтобы она принадлежала области (H)  (С).

ТЕОРЕМА 5. Для того чтобы функция выбора порождалась качественным порядком необходимо и достаточно, чтобы она принадлежала области (H)  (С)  (O).

ТЕОРЕМА 6. Для того чтобы функция выбора порождалась слабым порядком необходимо и достаточно, чтобы она принадлежала области (К).

Свойства Н, С, О кажутся очень естественными при выборе. Тем не менее, несложно привести пример, когда эти свойства не выполняются.

Пусть Х – множество точек на плоскости ограниченных прямоугольником АBCD: A(0, 0), B(0, 4), C(2, 4), D(2,0)

Ставится следующая задача выбора: на множестве Х найти геометрическое место центров кругов, включенных в Х, максимального радиуса. Покажем что соответствующая функция выбора не обладает ни одним из свойств H, K, O, C.

1) Пусть Х = АBCD; Y = АEFD; E(0,2), F(2,2) (Рис. 1). Тогда множеством центров кругов максимального радиуса, вписанных в ABCD, яввляется отрезок PQ (C(X) = PQ), где P(1, 3), Q(1, 1). Тогда C(X)  Y = QR. Очевидно, что C(Y) = Q. Получили, что на множестве X нашлось такое подмножество Y, что хотя Y X, тем не менее множество Y C(Х) не включено в C(Y), т.е нарушаются условия H и K.

2

P

R

Q

B

N

M

A

D

P

Q

C

O

T

B

E

A

D

C

F

Рис. 1

Рис. 2

) Пусть Y = MNOT: M(0, 1), N(0, 3), O(2, 3), T(2, 1) (Рис. 2). Так как, по прежнему, C(X) = PQ, а C(Y) = R(3, 3), то C(X) Y  X. Равенство C(X) = C(Y) при этом не выполняется, т.е нарушается условие O.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]