Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
test_po_oborudovaniyu.docx
Скачиваний:
37
Добавлен:
02.04.2015
Размер:
275.97 Кб
Скачать
  1. Хладагенты в холодильной системе и их экологическая целесообразность.

Холодильный агент (хладагент) — рабочее вещество холодильной машины, которое при кипении и в процессе изотермического расширения отнимает теплоту от охлаждаемого объекта и затем после сжатия передаёт её охлаждающей среде за счёт конденсации (воде, воздуху и т. п.).

Измерение кДЖ/кг ?

Хладагент является частным случаем теплоносителя. Важным отличием является использование теплоносителей в одном и том же агрегатном состоянии, в то время, как хладагенты обычно используют фазовый переход (кипение и конденсацию).

Основными холодильными агентами являются аммиак, фреоны (хладоны), элегаз и некоторые углеводороды. Следует различать хладагенты и криоагенты. У криоагентов температура кипения ниже, также к хладагентам имеются более высокие требования по взаимодействию с маслами компрессоров. В качестве холодильного агента при создании оксиликвита используется кислород.

Принципиальной разницей в использовании холодильных агентов в виде азота, гелия и т. д. является то, что жидкость расходуется и испаряется (как правило, в атмосферу), то есть используется разомкнутый холодильный цикл. В холодильных машинах фреон или аналогичный газ работает по замкнутому циклу, сжимаясь при помощи компрессора, охлаждаясь в конденсаторе.

Предельные углеводороды и их галогенные производные обозначаются буквой R с тремя цифрами после неё, то есть в виде R-xyz, где:

x (сотни) равно числу атомов углерода, уменьшенному на единицу;

y (десятки) равно числу атомов водорода, увеличенному на единицу;

z (единицы) равно числу атомов фтора.

Фреоны – жидкие или газообразные химические вещества, плохо растворимы в воде, без запаха. Используются в холодильниках, в качестве хладагентов.

Существует более 40 видов фреонов. Этот охлаждающий элемент – один из основных компонентов любого холодильника и морозильника .

Хладон 12 (дифтордихлорметан, обозначение R12). Это бесцветный газ со слабым запахом метана. Хорошо растворяет смазочные масла. Понижает вязкость масла. Не взрывается. Не горит.

Хладон 22 (дифторхлорметан, обозначение R22). Бесцветный газ со слабым запахом. Растворяет масла хуже, чем R12. Не взрывается. Не горит.

Безопасные для экологии свойства хладона R22 намного лучше, чем у R12. Он имеет невысокий уровень разрушения озона. Низкий уровень парникового эффекта

Хладагент R134a применяется в бытовых холодильниках и морозильных камерах.

Хладагент R600a или "изобутан" применяется в бытовых холодильниках и морозильных камерах. Огнеопасен. Взрывоопасен.

R-600a замещает фреон R12. Используется как альтернатива для R134а.

Холодильник, заправленный хладагентом R600a потребляет на 40-50% меньше электроэнергии, чем холодильник заправленный R12 и R134а и намного тише работает.

Основные требования, предъявляемые к хладоносителям:

а) низкая температура замерзания. Она должна быть ниже температуры испарения хладагента в испарителе на 5-8 градусов;

б) большая теплоемкость и теплопроводность;

в) малые вязкость и плотность;

г) химическая нейтральность к конструкционным материалам;

д) химическая стойкость и безвредность;

е) невысокая стоимость и доступность.

По степени озоноразрушающей активности хладагенты делят на две группы:

хладагенты с высокой озоноразрушающей активностью (ODP>=1,0); Хлорфторуглероды ХФУ (CFC)

хладагенты с низкой озоноразрушающей активностью (ODP<0,1). Гидрохлорфторуглероды ГХФУ (HCFC)

Гидрофторуглероды ГФУ (HFC), фторуглероды ФУ (FC), углеводороды (HC).Не содержащие хлора хладагенты, считаются полностью озонобезопасными. Таковыми являются хладагенты R134, R134a, R152a, R143a, R125, R32, R23, R218, R116, RC318, R290, R600, R600a, R717 и др.

Требования предъявляемые к хладагентам.

Требования к хладагентам подразделяются на следующие группы:

экологические - озонобезопасность, низкий потенциал глобального потепления, негорючесть и нетоксичность;

термодинамические - большая объемная холодопроизводитель-ность; низкая температура кипения при атмосферном давлении; невысокое давление конденсации; хорошая теплопроводность; малые плотность и вязкость хладагента, обеспечивающие сокращение гидравлических потерь на трение и местные сопротивления при его транспортировке; максимальная приближенность к заменяемым хладагентам (для альтернативных озонобезопасных хладагентов) по давлениям, температурам, удельной объемной хо-лодопроизводительности и холодильному коэффициенту;

эксплуатационные - термохимическая стабильность, химическая совместимость с материалами и холодильными маслами, достаточная взаимная растворимость с маслом для обеспечения его циркуляции, технологичность применения; негорючесть и не-взрывоопасность; способность растворять воду, незначительная текучесть; наличие запаха, цвет и т. д.;

экономические - наличие товарного производства, доступные (низкие) цены.

Альтернативными веществами могут быть чистые (простые) вещества и смеси. Предпочтение отдается прежде всего чистым веществам.

График парокомпрессионного холодильного цикла

1.В тепловом двигателе процессы происходят циклично, а холодильных установках — непрерывно, без разграничения циклов. Хотя кипение хладагента в испарителе приводит к многократному увеличению объёма рабочего тела, из-за непрерывной работы компрессора давление остается постоянным. Давление в конденсаторе также постоянно и определяется установившейся температурой. Если по каким-либо причинам давление в конденсаторе начнет меняться, то изменится физическое свойство газа — температура конденсации. Температура не меняется, значит давление постоянно. Таким образом, в парокомпрессионном холодильном цикле выделяют два постоянных давления: высокое и низкое.

2.Парокомпрессионный холодильный цикл является обратным — механическая энергия используется для переноса тепловой. В отличие от теплового двигателя, необходимо оценить не полученную механическую энергию, а перенесенный объем тепла.

3.Теплообмен между рабочим телом и окружающей средой происходит при установившихся по времени и постоянных по площади радиаторов температурах — кипения или конденсации.

4.Объёма хладагента при конденсации и кипении изменяется в десятки раз из-за смены агрегатных состояний вещества. Для холодильного цикла на координатах P и V необходимо использовать логарифмическую шкалу.

Поэтому парокомпрессионный холодильный цикл удобно представить в координатах T и S (температура и энтропия).

Линия, напоминающая параболу — диаграмма термодинамических свойств хладагента. Вершина этого купола — критическая точка, при которой конденсация жидкости не возможна.

Линия сжатия 1-2. Сжатие газа компрессором. При сжатии повышается давление и температура.

Линия охлаждения перегретого газа 2-3. Конденсация хладагента начинается в точке 3, после небольшого охлаждения газа. Перегрев необходим, чтобы образование жидкой фазы происходило в конденсаторе, а не в компрессоре.

Линия конденсации 3-4. Изменение энтропии при постоянной температуре. При конденсации отводится тепловая энергия.

Линия дросселирования 4-5. Дросселирование хладагента происходит на основе эффекта Джоуля — Томсона. Дросселирование — понижение давления газа или пара при протекании через сужение проходного канала трубопровода — дроссель, либо через пористую перегородку.

Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия — это та энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении.

Квазистатический процесс в термодинамике — идеализированный процесс, состоящий из непрерывно следующих друг за другом состояний равновесия. Такие процессы называют также квазиравновесными, так как систему в каждый момент времени можно считать находящейся в состоянии термодинамического равновесия.

В термодинамике наиболее часто рассматриваются следующие виды квазистатических процессов:

Изохорный процесс — процесс, происходящий при постоянном объёме;

Изобарный процесс — процесс, происходящий при постоянном давлении;

Изотермический процесс — процесс, в котором температура остается постоянной;

Изобарный процесс -термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа.

Изотермический процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре.

Для осуществления изотермического процесса систему обычно помещают в термостат (массивное тело, находящееся в тепловом равновесии), теплопроводность которого велика, так что теплообмен с системой происходит достаточно быстро по сравнению со скоростью протекания процесса, и, температура системы в любой момент практически не отличается от температуры термостата. Можно осуществить изотермический процесс иначе — с применением источников или стоков тепла, контролируя постоянство температуры с помощью термометров. К изотермическим процессам относятся, например, кипение жидкости или плавление твёрдого тела при постоянном давлении. Графиком изотермического процесса является изотерма.

Линия кипения 5-1. Кипение хладагента в испарителе происходит при постоянной температуре и давлении. При кипении поглощается тепловая энергия и энтропия повышается.

Площадь прямоугольника под отрезком 5-1 до оси S (интеграл функции по линии температуры испарителя 5-1) характеризует холодопроизводительность. Площадь всей фигуры 1-2-3-4-5 плюс интеграл по линии 4-5 характеризует затрачиваемую компрессором работу.

A. Введение. В холодильном контуре обычно не происходит существенного загрязнения со стороны хладагента, кроме загрязнения маслом. Однако если это случается, последствия бывают тяжелыми, особенно для регулирующего вентиля и компрессора.

Б. Масло. Масло переносится хладагентом в различные части холодильной установки либо в растворенном виде, либо в виде эмульсии. Хотя его количество в хладагенте можно понизить, полностью предотвратить загрязнение невозможно. Влияние загрязнения маслом зависит от его растворимости в хладагенте. Помимо того, что масло является загрязнителем, оно влияет на коэффициент теплопередачи в конденсаторах и испарителях и в силу других эффектов.

B. Растворимое масло. Масло растворяется в хладагенте и поэтому не образует масляной пленки на поверхности. Это не относится к испарителям непосредственного расширения, где хладагент полностью испаряется и масло присутствует в паре в виде капель. Они оседают на стенках, образуя изолирующую пленку. По счастью, коэффициент теплоотдачи в этой части испарителя мал и влияние масляной пленки невелико. Главная задача при этом — поддерживать достаточно высокую скорость пара, чтобы капли масла не скапливались в испарителе и не снижали эффективность теплопередачи.

Г. Нерастворимое масло. Масло не растворяется в аммиаке (при любых температурах) и R22 (если t < 0 °С). Оно по разному влияет на работу конденсаторов и испарителей.

Хладагенты делятся на три группы в зависимости от смешиваемости:

1.Хладагенты, которые смешиваются с маслом в любых пропорциях при любых условиях в холодильной системе.

2.Хладагенты, которые смешиваются в условиях конденсатора, но не в испарителе.

3.Хладагенты, которые очень немного или совсем не смешиваются с маслом при любых условиях системы.

Одно из основных воздействий смешивания хладагента - это растворение масла в картере компрессора. Растворение масла уменьшает вязкость, которая составляет сопротивление для жидкости под воздействием внешней силы. Следовательно, менее вязкие жидкости, например керосин, текут лучше, чем более вязкие жидкости, например машинное масло. Снижение вязкости масла уменьшает его способность должным образом смазывать движущиеся компоненты компрессора. Для адекватной смазки компрессора вязкость смазочных материалов должна оставаться в пределах устройства. Если вязкость масла слишком низкая, оно не сможет образовать защитную пленку между поверхностями движущихся частей. Данная пленка препятствует трению движущихся частей друг о друга. И наоборот, если вязкость масла слишком высокая, оно не будет достаточно текучим, и не проникнет между поверхностями, особенно расположенными близко друг к другу.

2) Компрессоры

Классификация

Общепринятая классификация механических компрессоров по принципу действия, под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора. По принципу действия все компрессоры можно разделить на две большие группы: динамические и объёмные.

Объёмные компрессоры

В машинах объёмного принципа действия рабочий процесс осуществляется в результате изменения объёма рабочей камеры. Номенклатура машин данного типа разнообразна основные из них: поршневые, винтовые, роторно-шестерёнчатые, мембранные, жидкостно-кольцевые, воздуходувки Рутса, спиральные, компрессор с катящимся ротором.

Поршневые компрессоры .

Поршневые компрессоры для холодильных машин, работающие на хладонах и аммиаке, с электрической мощностью больше 5 кВт, выпускаются в соответствии с ГОСТ 6492-84. Этим ГОСТом предусмотрены ограничения на степень повышения давления (Рк/Р0<9), на разность давлений (Рк-Р0<1,4 МПа), на температуру нагнетания (^<145 °С) и на поршневые усилия.

При выборе компрессоров необходимо учитывать указанные факторы.

Наиболее часто в холодильных машинах используются:

а) бескрейцкопфные аммиачные и фреоновые компрессоры. Это вертикальные или угловые (V- и W-образные) в блок-картерном исполнении (для прочности, жесткости и удобства компоновки) машины простого действия. Обычно это прямоточные компрессоры, с ложными крышками цилиндров (для защиты от гидроударов).

Цилиндры охлаждаемые. У аммиачных компрессоров – рубашечное охлаждение, водой. У фреоновых компрессоров - воздушное, с оребрением цилиндров.

Достоинства: машины быстроходные, легкие и компактные; незаменимы при малых производительностях.

Недостатки: сложный доступ к подшипникам, смазочной системе и др. узлам, расположенным в блоккартере.

б) крейцкопфные компрессоры с горизонтальным оппозитным расположением цилиндров. Это машины двойного действия с повышенной производительностью, одно- и двухступенчатые, с взаимно противоположным движением поршней. Предназначены для работы на аммиаке, пропане, пропилене. Охлаждение - водяное.

Недостаток - чувствительность к гидроударам.

Машины этого типа успешно вытесняются винтовыми компрессорами.

Роторные компрессоры — машины с вращающим сжимающим элементом, конструктивно подразделяются делятся на винтовые, ротационно-пластинчатые, жидкостно-кольцевые, встречаются и другие конструкции.

Винтовые компрессоры.Конструкция винтового блока состоит из двух массивных винтов и корпуса. При этом винты во время работы находятся на некотором расстоянии друг от друга, и этот зазор уплотняется масляной пленкой. Трущихся элементов нет. Пыль и другие твердые частицы и даже небольшие предметы при попадании в винтовой блок не вызывают никаких повреждений и могут лишь повредить масляной системе самого компрессора. Таким образом, ресурс винтового блока практически неограничен и достигает более чем 200-300 тыс. часов.

Винтовые компрессоры широко применяются в холодильных машинах. Это одно- или двухроторные машины объемного действия с постоянной геометрической степенью сжатия. Они подразделяются на два типа: сухие и маслозаполненные. В маслозаполненных компрессорах в рабочую полость впрыскивается значительное количество масла для уплотнения зазоров, смазки и охлаждения. Впрыск масла позволяет существенно снизить уровень шума.

Достоинства:

- быстроходность, малая масса и габариты (габариты в 2-10 раз, а масс 10-100 раз меньше, чем у поршневых компрессоров той же производительности), полная уравновешенность, практически беспульсационная подача, отсутствие вибраций;

- широкий диапазон плавного регулирования производительности (от 10 до 100%), работа на переменных режимах с незначительным изменением КПД;

- отсутствие помпажного режима;

- возможность работы во влажной среде, так как эти машины не боятся гидроударов;

- высокая надежность и значительный моторесурс (нет клапанов и трущихся деталей);

- простота обслуживания, автоматизации и дистанционного управления.

Недостатки:

- высокий уровень шума;

- необходимость охлаждения при средних и высоких степенях повышения давления.

Регулирование холодопроизводительности винтовых компрессоров осуществляется передвижением золотника, перемещаемого вдоль оси роторов. Перемещением его в сторону нагнетания уменьшается рабочая длина винта а, следовательно, производительность. При запуске компрессор полностью разгружается.

Пластинчато роторные компрессоры. Конструкция пластинчато-роторного блока состоит из одного ротора, статора и минимум восьми пластин, масса которых, а соответственно и толщина ограничены. На пластину в процессе работы действуют силы: центробежная и трения/упругости масляной пленки.

Т.к. масляная пленка нормализуется и становится равномерной и достаточной лишь после нескольких минут работы компрессора, то во время стартов и остановов идет трение пластин о статор и соответственно повышенный их износ и выработка.

Чем большее давление должен нагнетать такой блок, тем большая разницы давлений в соседних камерах сжатия, и тем большая должна быть центробежная сила для недопускания перетоков сжимаемого воздуха из камеры с большим давлением в камеру с меньшим. В свою очередь, чем больше центробежная сила, тем больше и сила трения в момент пуска/останова и тем тоньше масляная пленка во время работы – это является основной причиной почему данная технология получила широкое распространение в области вакуума (т.е. давление до 1 бара) и в области нагнетания давления до 3-4 бар.

Т.к. масляная пленка между пластинами и статором всего несколько микрон, то любая пыль, тем более твердые частички крупнее размеров, выступают как абразив, который царапает статор и делает выработку по пластинам. Это приводит к тому, что возникают перепуски сжимаемого воздуха из одной камеры сжатия в другую и производительность заметно падает.

В отличии от небольших вакуумных насосов, где широко применяется пластинчато-роторная технология, в компрессорах большой производительности и давлением выше 5 бар со временем необходимо будет менять весь блок в сборе, т.к. замена отдельно пластин эффективна лишь в случае восстановления геометрии статора, а такие большие статоры восстановлению (шлифовке) не подлежат.

Производители обычно не дают никаких данных по ресурсу пластинчато-роторного блока, т.к. он очень сильно зависит от качество воздуха и режима работы компрессора. В случае газовых компрессоров, где он качает газ практически не останавливаясь круглый год, ресурс может действительно достигать и более 100 тыс. часов, т.к. масляная пленка равномерная и достаточная все время работы без остановок.

В случае же промышленного использования, где разбор воздуха крайне неравномерен и компрессор запускается и останавливается несколько десятков раз в день, большую часть времени нормальной для работы масляной пленки внутри блока нет, что является причиной агрессивного износа пластин. В таком случае ресурс блока не более 25 тыс. часов.

Динамические компрессоры

В компрессорах динамического принципа действия газ сжимается в результате подвода механической энергии от вала, и дальнейшего взаимодействия рабочего вещества с лопатками ротора. В зависимости от направления движения потока и типа рабочего колеса такие машины подразделяют на центробежные и осевые.

Компрессоры динамического действия имеют следующие преимущества перед объемными поршневыми.

Значительно меньшие габаритные размеры и массу по сравнению с объемными компрессорами той же производительности. Это обусловлено непрерывностью потока вещества и высокими скоростями движения.

Надежность в работе вследствие малого износа при сжатии незагрязненных веществ. Единственными узлами, где имеется механическое трение, являются подшипники.

Практически полная уравновешенность вращающегося ротора, что позволяет устанавливать компрессоры на легких фундаментах.

Равномерность подачи сжатого вещества.

Отсутствие загрязнения вещества смазочным маслом. В холодильных машинах это позволяет повысить эффективность теплообмена в аппаратах и уменьшить их массу и размеры или снизить необратимые потери при теплообмене.

Возможность получения значительно большей производительности.

Возможность непосредственного соединения с высокооборотным приводным двигателем — паровой или газовой турбиной, высокочастотным электродвигателем. Это позволяет повысить КПД агрегата за счет уменьшения механических потерь и сделать его более компактным.

Основными недостатками компрессоров динамического действия являются следующие.

Трудность выполнения их для получения малой производительности, так как это сопряжено с необходимостью иметь очень высокую частоту вращения ротора. К тому же при малых абсолютных размерах рабочих колес относительные зазоры между лопаточными аппаратами и корпусом, а также в лабиринтных уплотнениях становятся значительными — а это приводит к снижению КПД. Кроме того, когда числа Рейнольдса в потоках сжимаемого вещества становятся меньше определенного значения, это сопровождается дополнительными потерями из-за усиления влияния вязкости и также вызывает снижение КПД компрессора.

Сравнительно узкий диапазон устойчивой работы при изменении производительности. Если не применять специальных методов регулирования, то уменьшение расхода вещества до 60—80% от расчетного объема сопровождается потерей устойчивости течения, проявляющейся в возникновении пульсаций давления и периодическом движении потока вещества в обратном направлении — от нагнетания к всасыванию. Это явление называют помпажом компрессора. Работа в режиме помпажа вызывает большие динамические нагрузки на ротор и может привести к выходу компрессора из строя.

Трудность получения высоких отношений давления — свыше 30—40. Для холодильной техники этот недостаток компрессоров динамического действия несущественен, так как в циклах холодильных машин такие высокие отношения давлений обычно не требуются.

Существенная зависимость характеристик компрессоров динамического действия от термодинамических свойств рабочего вещества, что не позволяет, как правило, эксплуатировать компрессоры этого типа на других рабочих веществах без изменения конструкции или режима работы.

Турбокомпрессоры — динамические машины, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей.

Это, как правило, центробежные компрессоры с объемной производительностью от 50-60 м /мин и более. Они используются для крупных холодильных станций и установок. Число секций - 2-3, ступеней от 3-х до 7-ми, с патрубками между секциями для реализации промежуточного охлаждения и ступенчатого дросселирования.

Для регулирования производительности компрессора используется входной регулирующий (направляющий) аппарат (ВРА или ВНА). Путем закручивания потока на входе в рабочее колесо можно менять производительность в пределах от 100 до 50 % номинального значения.

Это высокооборотные машины («=13000-15000 об/мин), поэтому при электроприводе необходимы редукторы.

Преимущества и недостатки холодильных турбокомпрессоров такие же как и у воздушных нагнетателей такого типа.

Прочие классификации

По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, холодильные, энергетические, общего назначения и т. д.), по роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый, фреоновый, углекислотный и т. д.).

По способу отвода теплоты — с жидкостным или воздушным охлаждением.

По типу приводного двигателя — с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. По устройству компрессоры могут быть одноступенчатыми и многоступенчатыми.

По конечному давлению различают:

вакуум-компрессоры, газодувки — машины, которые отсасывают газ из пространства с давлением ниже атмосферного или выше. Воздуходувки и газодувки подобно вентиляторам создают поток газа, однако, обеспечивая возможность достижения избыточного давления от 10 до 100 кПа (0,1…1 атм), в некоторых специальных исполнениях — до 200 кПа (2 атм). В режиме всасывания воздуходувки могут создавать разрежение как правило 10..50 кПа, в отдельных случаях до 90 кПа и работать как вакуумный насос низкого вакуума[2];

компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа;

компрессоры среднего давления — от 1,2 до 10 МПа;

компрессоры высокого давления — от 10 до 100 МПа.

компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.

Производительность компрессоров обычно выражают в единицах объёма газа сжатого в единицу времени (м³/мин, м³/час). Производительность обычно считают по показателям приведённым к нормальным условиям. При этом различают производительность по входу и по выходу, эти величины практически равны при маленькой разнице давлений между входом и выходом, но при большой разнице, например, у поршневых компрессоров, выходная производительность может при тех же оборотах падать более чем в два раза по сравнению с входной производительностью, измеренной при нулевом перепаде давления между входом и выходом. Компрессоры называются дожимающими, если давление всасываемого газа существенно превышает атмосферное.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]