Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гидравлика / Гидравлика задачник.doc
Скачиваний:
280
Добавлен:
01.04.2015
Размер:
15.6 Mб
Скачать

Задача 21

Дроссельный затвор диаметром D = l м, установленный в трубопроводе, может свободно вращаться вокруг горизонтальной центральной оси О-О. Глубина погружения центра тяжести затвора Н =10 м. При закрытом затворе за ним в трубопроводе воды нет.

Определить:

1) момент Мд силы давления воды относительно горизонтальной оси О-О вращения затвора;

2) момент Мтр силы трения, если диаметр цапф d = 200 мм, а коэффициент трения f = 0,2;

3) момент силы, который необходимо приложить для открытия затвора при его вращении по часовой стрелке.

Рисунок к задаче 21

Задача 22

Определить силу давления на плоский прямоугольный затвор и центр давления. Глубина воды в верхнем бьефе h1 = 3 м, в нижнем h2 = 1,2 м. Ширина затвора b = 4 м, высота H = 3,5 м. Расчет произвести аналитическим и графо-аналитическим способами. Найти начальное подъемное усилие, если толщина затвора t = 0,08 м, плотность материала, из которого изготовлен затвор, ρ = 1200 кг/м3, коэффициент трения затвора о пазы f = 0,5.

Рисунок к задаче 22

Задача 23

Плоский затвор, закрывающий выпускное отверстие в плотине, может перемещаться по ее стенке, наклоненной к горизонту под углом а = 70° (отметки уровней даны в метрах). Размеры затвора: высота h = 1,8 м; ширина b == 2,4 м; толщина с = 0,4 м; масса затвора m = 2 т. Определить силу Т, необходимую для начального смещения закрытого затвора вверх, если коэффициент трения скольжения затвора в направляющих f = 0,35.

Рисунок к задаче 23

Задача 24

Щитовой затвор должен автоматически опрокидываться для пропуска воды при уровне последней Н1 = 6 м. Щит поворачивается на цапфах О диаметром d = 0,4 м, имеющих коэффициент трения скольжения f = 0,2. Ширина щита В = 8 м, его угол наклона а = 60°. Найти расстояние х, на каком должна быть расположена ось поворота щита, если под щитом имеется постоянный уровень воды Н2 = 3 м, и определить силу Р, воспринимаемую его опорами в момент опрокидывания.

Рисунок к задаче 24

Задача 25

Прямоугольный поворотный затвор размером L x B = 2x3 м перекрывает выход воды в атмосфepy из резервуара, уровень в котором Н = 4 м.

Определить:

1. На каком расстоянии х от нижней кромки затвора следует расположить его ось поворота, чтобы для открытия затвора нужно было преодолевать только момент трения в цапфах О.

2. Момент трения Мтр, если диаметр цапф d = 150 мм, коэффициент трения скольжения в цапфах f = 0,2.

Рисунок к задаче 25

Задача 26

Поворотный клапан АО закрывает выход из бензохранилища в трубу квадратного сечения со стороной h = 0,3 м. Прямоугольная пластина клапана опирается на срез трубы, сделанный под углом =45°. В трубе жидкость отсутствует.

Определить (без учета трения в опоре О клапана и ролике В) силу Т натяжения троса, необходимую для закрытия клапана, если уровень бензина Н = 0,85 м, давление над ним по манометру М=5 кПа. Плотность бензина  = 700 кг/м3.

Рисунок к задаче 26

Задача 27

Поворотный клапан закрывает выход из бензохранилища в трубу квадратного сечения. Определить, какую силу Т нужно приложить к тросу для открытия клапана при следующих данных: h = 0,4 м, Н=1,0 м; α = 30°; плотность бензина rб = 700 кг/м3. Манометрическое давление паров бензина в резервуаре рм = 10 кПа.

Рисунок к задаче 27

Задача 28

Труба прямоугольного сечения ab = 0,50,2 м для выпуска нефти из открытого нефтехранилища закрывается откидным плоским клапаном, расположенном под углом а = 60° к горизонту. Определить начальное подъемное усилие Т троса, чтобы открыть клапан при глубине нефти h = 2,8 м. Построить эпюру гидростатического давления на клапан.

Рисунок к задаче 28

Задача 29

Труба диаметром d = 300 мм для выпуска нефти из открытого нефтехранилища закрывается откидным клапаном, расположенным под углом a = 45° к горизонту. Определить усилие Р, которое нужно приложить к тросу, чтобы открыть клапан, если глубина расположения клапана Н = 8 м, плотность нефти r = 860 кг/м3.

Рисунок к задаче 29

Задача 30

Наклонный щит плотины имеет возможность поворачиваться около оси О. При каком уровне воды Н щит перевернется, если угол на­клона щита a = 60°, расстояние от нижней кромки щита до шарнира а = 0,9 м?

Весом щита и трением в оси пренебречь.

Рисунок к задаче 30

4. Сила гидростатического давления на криволинейные поверхности

Рис.1

Для криволинейных поверхностей, симметричных относительно вертикальной плоскости (большинство практических задач), сумма элементарных сил давления приводится к одной равнодействующей силе, лежащей в плоскости симметрии, или к паре сил, лежащей в той же плоскости.

Методика определения равнодействующей (результирующей) силы Р (рис.1) сводится к разложению ее на горизонтальную Рх и вертикальную Рz составляющие с их дальнейшим определением.

Горизонтальная составляющая силы давления, воспринимаемой криволинейной поверхностью, равна силе давления на вертикальную проекцию этой поверхности, нормальную к плоскости симметрии, и определяется по формуле

, (1)

где hc – расстояние по вертикали от центра тяжести вертикальной проекции поверхности до пьезометрической плоскости о-о, т.е. до плоскости, где расчетное давление равно атмосферному; z – площадь вертикальной проекции поверхности;  - плотность жидкости; g – ускорение свободного падения.

Линия действия силы Рх, проходя через центр давления вертикальной проекции поверхности, лежит в плоскости симметрии и смещена относительно центра тяжести вертикальной проекции на расстояние

,

где Jc – момент инерции площади вертикальной проекции относительно горизонтальной оси, проходящей через центр тяжести проекции.

Вертикальная составляющая силы давления, воспринимаемой криволинейной поверхностью, равна весу жидкости в объеме «тела давления» Wт.д, которое ограничено самой поверхностью, свободной поверхностью и вертикальной проектирующей поверхностью, построенной на контуре криволинейной поверхности. Она определяется по формуле

. (2)

Сила Рz проходит через центр тяжести объема «тела давления» Wт.д и направлена вниз, если объем строится со смоченной стороны поверхности; если объем строится с несмоченной стороны поверхности, сила Рz направлена вверх.

В формулах (1) и (2) для Рх и Рz предполагается, что жидкость находится с одной стороны поверхности и с несмоченной ее стороны давление равно атмосферному.

Полная сила давления на поверхность представляет геометрическую сумму сил Рх и Рz :

. (3)

Линия действия силы Р проходит через точку пересечения линий действия сил Рх и Рz.

Угол  наклона равнодействующей к горизонту определяется из формулы

. (4)

Соседние файлы в папке гидравлика