Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kolok_2_luchshe

.doc
Скачиваний:
24
Добавлен:
31.03.2015
Размер:
141.31 Кб
Скачать

Наследственность и изменчивость – фундаментальные свойства живого. Ядерная (хромосомная) и цитоплазматическая наследственность

Наследственность свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируются общие признаки и свойства данного типа клеток и вида организмов, а также некоторые индивидуальные особенности родителей.

Установлено, что гены размещаются в хромосомах, располагаясь в них в линейном порядке. Гены каждой хромосомы образуют группу сцепления, число которых определяется количеством хромосом в половых клетках. Гены одной группы сцепления наследуются, как правило, совместно. Однако в ряде случаев происходит их перекомбинация в связи с кроссинговером (см. разд. 5.3.2), частота которого зависит от расстояния между генами.

Таким образом, в хромосомной теории нашел отражение один из важнейших принципов генетики — единство дискретности и непрерывности наследственного материала.

Необходимо отметить, что также в начале XX в. были обнаружены факты, которые доказывали наличие в клетках внехромосомного наследственного материала, располагающегося в различных цитоплазматических структурах и определяющего особую цитоплазматическую наследственность

Генный уровень организации наследственного материала

В процессе изучения свойств генетического кода была обнаружена его специфичность. Каждый триплет способен кодировать только одну определенную аминокислоту. Интересным фактом является полное соответствие кода у различных видов живых организмов.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называют генными мутациями.

Определяя возможность развития отдельного качества, присущего данной клетке или организму, ген характеризуется дискретностью действия.

же нуклеотидная последовательность может детерминировать синтез не одного, а нескольких полипептидов. Это наблюдается в случае альтернативного сплайсинга у эукариот и при перекрывают генов у фагов и прокариот. Очевидно, такую способность следует оценить как множественное, или плейотропное, действие гена (хотя традиционно под плейотропным действием гена принято понимать участие его продукта — полипептида — в разных биохимических процессах, имеющих отношение к формированию различных сложных признаков). ген характеризуется дозированностью действия, т.е. количественной зависимостью результата его экспрессии от дозы соответствующего аллеля этого гена.

Хромосомный уровень организации наследственного материала

Совокупность генов, входящих в состав одной хромосомы, образует группу сцепления. Каждая хромосома уникальна по набору заключенных в ней генов. Число групп сцепления в наследственном материале организмов данного вида определяется, таким образом, количеством хромосом в гаплоидном наборе их половых клеток. При оплодотворении образуется диплоидный набор, в котором каждая группа сцепления представлена двумя вариантами — отцовской и материнской хромосомами, несущими оригинальные наборы аллелей соответствующего комплекса генов. Хсостоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин.

Наиболее распространенной является точка зрения, согласно которой хроматин (хромосома) представляет собой спирализованную нить. При этом выделяется несколько уровней спирализации (компак-тизации) хроматина: ДНК, нуклеосом. нить, элементарная хроматиновая фибрилла, интерфазная хромонема, метафазная хромотида.

В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора). Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками. Формы хромосом:I — телоцентрическая, II — акроцентрическая, III—субметацентрическая, IV—метацентрическая;

Геномный уровень организации наследственного материала

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом

Генотип – сбалансированная система взаимодействующих генов

Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.

Взаимодействие аллельных генов в генотипе: доминирование, неполное доминирование, кодоминирование, межаллельная комплементация, аллельное исключение.

Аллельные гены лежат в одинаковых локусах гомологичных хромосом и отвечают за один признак.

Виды взаимодействия аллельных генов.

Полное доминирование - Доминантный аллель полностью подавляет рецессивный

Неполное доминирование - Доминантный аллель не полностью подавляет рецессивный, гетерозиготы имеют промежуточный фенотип.

Кодоминирование - Оба аллеля вместе проявляются в фенотипе

Аллельное исключение - В одних клетках тела доминирует один аллель, в других – другой. (организм имеет мозаичный фенотип)

Межаллельная комплементация - Наблюдается у генов, кодирующих белки с четвертичной структурой, т.е. состоящие из нескольких субъединиц, и определяется их пространственной конфигурацией.

Взаимодействие неаллельных генов: эпистаз, комплементарность, полимерия.

Неалле́льные ге́ны — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между собой.

При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют три формы и взаимодействия неаллельных генов:

Комплементарность - вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков.

Эпистаз - взаимодействие неаллельных генов, при котором один из них подавляется другим.

Полимерия - взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов.

Наследственность и наследование. Типы и варианты наследования признаков

Насле́дственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Моногенное и полигенное наследование. Аутосомное и сцепленное с полом типы наследования.

Моногенные болезни наследуются в соответствии с законами классической генетики Менделя. Соответственно этому, для них генеалогическое исследование позволяет выявить один из трёх типов наследования: аутосомно-доминантный, аутосомно-рецессивный и сцепленное с полом наследование.

Широкий круг моногенных болезней образуют наследственные нарушения обмена веществ, возникновение которых связано с мутацией генов, контролирующий синтез ферментов и обусловливающих их дефицит или дефект строения — ферментопатии.

Полигенные болезни наследуются сложно. Для них вопрос о наследовании не может быть решён на основании законов Менделя. Ранее такие наследственные заболевания характеризовались как болезни с наследственной предрасположенностью. Однако сейчас о них идёт речь как о мультифакториальных заболеваниях с аддитивно-полигенным наследованием с пороговым эффектом.

К этим заболеваниям относятся такие болезни как рак, сахарный диабет, шизофрения, эпилепсия, ишемическая болезнь сердца, гипертензия и многие другие.

Характерные черты аутосомного наследования признаков обусловлены тем, что соответствующие гены, расположенные в аутосомах, представлены у всех особей вида в двойном наборе. Это означает, что любой организм получает такие гены от обоих родителей. В соответствии с законом чистоты гамет в ходе гаметогенеза все половые клетки получают по одному гену из каждой аллельной пары. Обоснованием этого закона является расхождение гомологичных хромосом, в которых располагаются аллельные гены, к разным полюсам клетки в анафазе I мейоза.

Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у представителей разного — гомо- и гетерогаметного пола.

Гомогаметный пол несет двойную дозу генов, расположенных в Х-хромосоме. Развитие соответствующих признаков у гетерозигот (ХAХa) зависит от характера взаимодействия между аллельными генами. Гетерогаметный пол имеет одну Х-хромосому (ХО или XY). У некоторых видов Y-хромосома генетически инертна, у других она содержит некоторое количество структурных генов, часть из которых гомологична генам Х-хромосомы (рис. 6.9). Гены негомологичных участков Х- и Y-хромосом (или единственной Х-хромосомы) у гетерогаметного пола находятся в гемизиготном состоянии. Они представлены единственной дозой: ХAY, ХaХ, XYB. Формирование таких признаков у гетерогаметного пола определяется тем, какой аллель данного гена присутствует в генотипе организма.

Характер наследования сцепленных с полом признаков в ряду поколений зависит от того, в какой хромосоме находится соответствующий ген. В связи с этим различают Х-сцепленное и Y-сцепленное (голандрическое) наследование

Множественный аллелизм. Наследование групп крови по системе АВ0.

Множественный аллелизм — это существование в популяции более двух аллелей данного гена.Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьезным патологиям.

Система AB0

Известно несколько основных групп аллельных генов этой системы: A¹, A², B и 0. Генный локус для этих аллелей находится на длинном плече хромосомы 9. Основными продуктами первых трёх генов — генов A¹, A² и B, но не гена 0 — являются специфические ферменты гликозилтрансферазы, относящиеся к классу трансфераз. Эти гликозилтрансферазы переносят специфические сахара — N-ацетил-D-галактозамин в случае A¹ и A² типов гликозилтрансфераз, и D-галактозу в случае B-типа гликозилтрансферазы. При этом все три типа гликозилтрансфераз присоединяют переносимый углеводный радикал к альфа-связующему звену коротких олигосахаридных цепочек.

Субстратами гликозилирования этими гликозилтрансферазами являются, в частности и в особенности, как раз углеводные части гликолипидов и гликопротеидов мембран эритроцитов, и в значительно меньшей степени — гликолипиды и гликопротеиды других тканей и систем организма. Именно специфическое гликозилирование гликозилтрансферазой A или B одного из поверхностных антигенов — агглютиногена — эритроцитов тем или иным сахаром (N-ацетил-D-галактозамином либо D-галактозой) и образует специфический агглютиноген A или B.

В плазме крови человека могут содержаться агглютинины α и β, в эритроцитах — агглютиногены A и B, причём из белков A и α содержится один и только один, то же самое — для белков B и β.

Таким образом, существует четыре допустимых комбинации; то, какая из них характерна для данного человека, определяет его группу крови:

α и β: первая (0)

A и β: вторая (A)

α и B: третья (B)

A и B: четвёртая (AB)

Независимое и сцепленное наследование признаков. Законы независимого наследования Менделя.

Независимое наследование признаков.

Г. Мендель — основоположник генетики, которая изучает наследственность и изменчивость организмов, их материальные основы.

Открытие Г. Менделем правила единообразия, законов расщепления и независимого наследования. Проявление правила единообразия и закона расщепления во всех видах скрещивания, а закона независимого наследования — при дигиб-ридном и полигибридном скрещивании.

Закон независимого наследования — каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами (доминантные признаки) с растениями с зелеными и морщинистыми семенами (рецессивные признаки) во втором поколении происходит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части гладких и одна часть морщинистых семян). Расщепление по одному признаку идет независимо от расщепления по другому.

Причины независимого наследования признаков — расположение одной пары генов (Аа) в одной паре гомологичных хромосом, а другой пары (ВЬ) — в другой паре гомологичных хромосом. Поведение одной пары негомологичных хромосом в митозе, мейозе и при оплодотворении не зависит от другой пары. Пример: гены, определяющие цвет семян гороха, наследуются независимо от генов, определяющих форму семян.

Сцепленное наследование признаков.

Десятки и сотни тысяч генов в клетке — основа формирования большого разнообразия признаков в организме. Несоответствие числа хромосом (единицы, десятки) числу генов (тысячи, сотни тысяч) — доказательство расположения в каждой хромосоме множества генов.

Группа сцепления — хромосома, в которой расположено большое число генов. Соответствие групп сцепления числу хромосом.

Неприменимость закона независимого наследования к признакам, формирование которых определяется генами, расположенными в одной группе сцепления — хромосоме. Закон сцепленного наследования, открытый Т. Морганом, — сцепление генов, локализованных в одной хромосоме. Совместное наследование генов одной группы сцепления (при мейозе хромосомы со всей группой генов попадают в одну гамету, а не расходятся в разные гаметы).

Кроссинговер — перекрест хромосом и обмен участками генов между гомологичными хромосомами — причина нарушения сцепленного наследования, появления в потомстве особей с перекомбинированными признаками. Пример: при скрещивании дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями появляется потомство с родительскими фенотипами и небольшое число особей с перекомбинацией признаков: серое тело — зачаточные крылья и темное тело — нормальные крылья.

Зависимость частоты перекреста, перекомбинации генов от расстояния между ними: чем больше расстояние между генами, тем больше вероятность обмена участками генов. Использование этой зависимости для составления генетических карт. Отражение в генетических картах места расположения генов в хромосоме, расстояния между ними. Значение перекреста хромосом — возникновение новых комбинаций генов, повышение наследственной изменчивости, играющей большую роль в эволюции и селекции.

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Сцепление генов. Кроссинговер. Опыты Моргана. Хромосомная теория наследственности. Принципы построения генетических карт хромосом.

Сцепление генов, совместная передача двух или более генов от родителей потомкам. Объясняется тем, что эти гены лежат в одной хромосоме, то есть принадлежат одной группе сцепления и поэтому не могут случайно перекомбинироваться в мейозе, как это бывает при наследовании генов, лежащих в разных хромосомах. С. г. было открыто в 1906 английскими генетиками У. Бэтсоном и Р. Пеннетом, обнаружившими в опытах по скрещиванию растений у некоторых генов тенденцию передаваться совместно и тем самым нарушать закон независимого комбинирования признаков

Кроссинго́вер (другое название в биологии перекрёст) — явление обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования.

Хромосомная теория наследственности[1] — теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Существование кроссинговера побудило Моргана разработать в 1911-1914 гг. принцип построения генетических карт хромосом. В основу этого принципа положено представление о расположении генов по длине хромосомы в линейном порядке. За единицу расстояния между двумя генами условились принимать 1 % перекреста между ними.

Допустим, что к одной группе сцепления относятся гены А и В. Между ними обнаружен перекрест в 10 %. Следовательно, гены А и В находятся на расстоянии 10 единиц. Допустим далее, что к этой же группе сцепления относится ген С. Чтобы узнать его место в хромосоме, необходимо выяснить, какой процент перекреста он дает с обоими из двух уже известных генов. Например, если с А он дает 3 % перекреста, то можно предположить, что ген С находится либо между А и В, либо с противоположной стороны, то есть А расположен между В и С. Если между В и С окажется перекрест 7 %, то на хромосоме их следует расположить в таком порядке, как на верхней схеме. Если между В и С перекрест составит 13 %, то расположение генов будет как на нижней схеме.

Изменчивость. Классификация и характеристика форм изменчивости

1. Изменчивость как состояние. В этом значении термин «изменчивость» служит для обозначения отличий биологических объектов друг от друга в данный момент времени. Всегда существуют различия между частями одного организма, между разными организмами в популяции, между разными внутрипопуляционными группировками, между популяциями.

2. Изменчивость как процесс. В этом значении термин «изменчивость» служит для обозначения изменения биологического объекта во времени. В этом случае изменчивость отражает развитие особи, отличие потомков от родителей.

Любая наблюдаемая изменчивость является фенотипической. В свою очередь, фенотипическая, или общая изменчивость включает три компонента:

– Наследственная (генетическая, или генотипическая изменчивость) – в значительной мере обусловлена влиянием генетических факторов. Например, в сходных условиях выращивается несколько сортов одного вида растений. Тогда различия между результатами эксперимента (например, урожайность) обусловлены генетическими особенностями каждого сорта. В основе генетической изменчивости лежит мутационная и комбинативная изменчивость.

– Ненаследственная (модификационная) изменчивость – в значительной мере обусловлена действием негенетических (экзогенных) факторов. Например, один сорт растений выращивается в разных условиях. Тогда различия между результатами эксперимента (например, урожайность) обусловлены влиянием условий выращивания растений.

– Неконтролируемая (остаточная изменчивость) – обусловлена неконтролируемыми (по крайней мере, в данном эксперименте) факторами.

Для разных признаков влияние генотипа и условий среды на общую фенотипическую изменчивость неодинаково. Например, окраска шерсти, жирномолочность у крупного рогатого скота, масса яиц у кур зависят, в основном, от особенностей породы (т.е. от генотипа) – эти признаки обладают высокой наследуемостью. Другие признаки: качество шерсти, общая удойность у КРС, яйценоскость у кур – зависят, в основном, от условий выращивания и содержания – эти признаки обладают низкой наследуемостью.

Модификационная изменчивость. Норма реакции. Вариационно-статистический метод изучения модификационной изменчивости.

Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Норма реакции

Предел проявления модификационной изменчивости организма при неизменном генотипе — норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции — спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет предел для каждого вида — например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных изменений есть разные пределы нормы реакции. Например, сильно варьируют величина удоя, продуктивность злаков (количественные изменения), слабо — интенсивность окраски животных и т. д. (качественные изменения).

В соответствии с этим норма реакции может быть широкой (количественные изменения — размеры листьев многих растений, размеры тела многих насекомых в зависимости от условий питания их личинок) и узкой (качественные изменения — окраска у куколок и имаго некоторых бабочек). Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков — широкая (например, сезонные изменения окраски у многих видов животных северных широт).

Вариационный ряд

Ранжированное отображение проявления модификационной изменчивости — вариационный ряд — ряд модификационной изменчивости свойства организма, который состоит из отдельных свойств видоизменений, размещенных в порядке увеличения или уменьшения количественного выражения свойства (размеры листка, изменение интенсивности окраски шерсти и т. д.). Единичный показатель соотношения двух факторов в вариационном ряде (например, длина шерсти и интенсивность ее пигментации) называется варианта. Например, пшеница, растущая на одном поле, может сильно отличаться количеством колосьев и колосков в силу различных показателей почвы, увлажненности на поле.

Генотипическая изменчивость. Комбинативная изменчивость

Генотипическая изменчивость характеризуется тем, что:

передается по наследству;

генотип особи подвергается изменениям;

носит случайный характер.

В зависимости от того, какими именно изменениями генотипа определяется Генотипическая изменчивость, выделяют две её формы: мутационную (в результате мутаций) и комбинативную (как следствие новых комбинаций генов).

Комбинативная изменчивость

Комбинативная изменчивость является результатом появления у потомков новых комбинаций генов, унаследованных от родителей. В основе этого типа изменчивости лежит генетическая рекомбинация, происходящая во время мейоза.

Мутационная изменчивость. Классификация мутаций, характеристика и биологическое значение мутаций.

Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]