Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kolok_1_evolucija.doc
Скачиваний:
5
Добавлен:
22.08.2019
Размер:
184.83 Кб
Скачать

№2

Олигомеризация гомологичных (гомодинамных) органов - принцип Догеля - процесс (в ходе эволюции животных) уменьшения количества гомологичных и гомодинамных образований до некоторого определенного числа, связанный с интенсификацией функций системы.[6],[7],[8],[9]. Реализуется в эволюции всех основных филогенетических стволов многоклеточных животных, сопровождаясь их прогрессивной морфологической и функциональной дифференцировкой.

Принцип множественной закладки новообразующихся органов Догеля - новые органы возникают (напр., из-за перемены образа жизни - перехода от сидячего образа жизни к подвижному или от водного к наземному) обычно в большом числе, слабо развиты, однородны и часто располагаются без определенного порядка. По мере дифференциации они приобретают определенную локализацию, количественно уменьшаясь до постоянного числа для данной таксономии. Например, сегментация тела в типе кольчатых червей носит множественный и неустановившийся характер. Все сегменты однородны. У членистоногих (произошедших от кольчатых червей) число сегментов в большинстве классов сокращается, становится постоянным, отдельные сегменты тела, объединяемые обычно в группы (голова, грудь, брюшко и т. п.), специализируются на выполнении определенных, функций.

Выяснение, сохраняют они множественный характер или уже подверглись олигомеризации те или иные органы, позволяет судить о степени древности их возникновения. По комбинации органов разного возраста иногда можно судить о филогении.

Для эволюции одноклеточных характерна не олигомеризация, а полимеризация, т.е., увеличение, умножение частей клетки (органоидов).

Олигомеризация - процесс уменьшения в ходе эволюции органов, выполняющих одинаковую функцию.

Биологическая реду́кция (от лат. reductio — возвращение, отодвигание назад) — уменьшение, упрощение строения или исчезновение органов в связи с утратой их функций в процессе эволюции.

Нередко утрата органами присущей им функции происходит в ходе индивидуального (онтогенез) или исторического (филогенез) развития организмов. Обычно биологическая редукция ведёт к процветанию вида (биологическому прогрессу).

Дифференцировка клеток — процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (т. е. согласованной функциональной активности) определённого набора генов. Клетки-родоначальницы определённых линий или клонов называют стволовыми клетками. превращение первоначально одинаковых клеток в специализированные. Субституция - биологически равноценное замещение одного исчезнувшего в ходе эволюции органа другим органом. Различают субституцию органов и функций.

Гетерохрония

(от гетеро… и греч chrónos — время), разновременность, изменение времени закладки и темпа развития органов у потомков животных и растений по сравнению с предками. Г. может выражаться в более ранней закладке и усиленном развитии органа (акселерация) или в более поздней его закладке и замедленном развитии (ретардация), что зависит от времени начала функционирования органа и, следовательно, от условий среды, в которой протекает онтогенетическое (см. Онтогенез) развитие организма. Г. как приспособления организмов к изменяющимся условиям их развития имеют существенное значение в историческомразвитии видов (филогенезе). Термин "Г." был введён в биологию нем. естествоиспытателем Э. Геккелем для обозначения временных нарушений биогенетического закона. Г. изучается как один из основных процессов преобразования организации животных и растений под влиянием измеряющихся условий жизни при видообразовании. Примером Г. может служить раннее развитие у млекопитающих мышц языка, благодаря чему новорождённый детёныш способен производить сосательные движения. Скороспелость и позднеспелость также относятся к явлениям Г., затрагивающим организм в целом.

Гетеротопия

(от гетеро... и греч. tópos — место), изменение места закладки и развития органа у животных в процессе их индивидуального развития— онтогенеза; один из путей эволюционной перестройки организма. Г. возникает вследствие миграции клеток из одного зародышевого листка в другой, смещения клеток в пределах данного зародышевого листка или вторичного смещения органов. Примеры Г.: смещение сердца у птиц и млекопитающих в грудную полость (у рыб и амфибий оно располагается вблизи головы); перемещение передних конечностей у высших позвоночных кзади (по сравнению с грудными плавниками рыб). Термин "Г." введён немецким естествоиспытателем Э. Геккелем (1874) для обозначения нарушений филогенетически обусловленной пространственной последовательности стадий онтогенеза. Впоследствии было показано, что Г. не укладывается в геккелевскую трактовку ценогенеза.

Гетеробатмия

(от гетеро... и греч. bathmós — степень, ступень), неодинаковый уровень специализации различных органов, достигнутый в процессе эволюции организмов. См. Мозаичная эволюция.

№4

XIX веке ученые, изучавшие внутриутробное развитие человеческого эмбриона, заметили, что в первые месяцы жизни он обладает поразительным сходством с другими позвоночными. Например, в месячном возрасте у человеческого эмбриона в области шеи заметны щели, во всех отношениях похожие на зачаточные жабры. Позднее зародыш имеет сходство с земноводными, затем с птицами и наконец — с другими млекопитающими. Это сходство привело к появлению приведенного выше изречения, сделанного немецким натуралистом Эрнстом Геккелем (Ernst Haeckel, 1834–1919) в его книге «Решето вселенной», опубликованной в 1899 году. Имеется в виду, что онтогенез живого существа (развитие индивида) повторяет путь филогенеза (развития типа, класса или вида — см. Система классификации Линнея). Так, человеческий эмбрион сначала похож на эмбрион рыбы, затем рептилии и так далее — до тех пор, пока не проявится его принадлежность к роду людей. Такова одна из этих идей — ясных, красивых, разумных — и в корне неверных.

На самом деле у человеческого зародыша никогда не бывает жабр или каких-либо других придатков, которые ему следовало бы в соответствии с этой концепцией иметь на той или иной стадии развития. Появляющиеся жаброподобные щели называются вторая жаберная дуга. У рыб эти образования действительно развиваются в жабры, но у человека они служат предшественниками частей головы и шеи. Точно так же, как теория эволюции предполагает не то, что человек произошел от приматов, а то, что он имеет с ними общего предка, — так и эмбриология утверждает не то, что человеческий зародыш в своем развитии проходит все ступени эволюции, а просто то, что в нем развиваются другие органы из тех же зародышевых клеток. (Идея о том, что «онтогенез повторяет филогенез», чем-то напоминает столь же неверную теорию Триединого мозга.)

Удивительно, но несмотря на то, что эта идея, которая удостоилась даже статуса закона биогенетики, была опровергнута почти сразу после того, как была выдвинута, она тем не менее смогла просуществовать до наших дней (ее даже можно найти еще в некоторых учебниках!). Между онтогенезом и филогенезом действительно есть связь, но нет эмбриологического повторения. К очевидным вещам иногда полезно относиться скептически!

Биогенетический закон Геккеля-Мюллера: каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденного его предками или его видом (филогенез). Закон впервые сформулирован немецким естествоиспытателем Эрнстом Геккелем в 1866 г. Краткая формулировка закона звучит следующим образом: Онтогенез есть рекапитуляция филогенеза.

Эмбриональное развитие видов

К примеру, развитие лягушки включает в себя стадию головастика, который по своему строению гораздо больше похож на рыб, чем на земноводных. Зародыши всех без исключения позвоночных животных также имеют на ранних стадиях развития жаберные щели, двухкамерное сердце и другие признаки, объединяющие их с рыбами.

Следствия биогенетического закона

Биогенетический закон часто рассматривается как подтверждение дарвиновской теории эволюции, хотя он вовсе не следует из классического эволюционного учения.

Например, если вид А2 возник путём эволюции из более древнего вида А1 через ряд переходных форм (A1 => => A2), то, в соответствии с классической теорией эволюции, возможен и обратный процесс, при котором вид А2 превращается в А1 - через прохождение тех же промежуточных стадий, но в обратном порядке.

Биогенетический закон "обратную эволюцию" запрещает: если вид А2 возник путём эволюции из вида А1, то в генетической памяти вида А2 должна сохраниться "запись" более древних генов, связанных с А1. В то же время, поскольку в генах А1 нет "записей", связанных с более поздним видом А2, то А1 не может происходить из А2.

Из биогенетического закона следует, например, что птицы или млекопитающие не могут эволюционным путём превратиться в пресмыкающихся, а затем в земноводных и рыб, ни при каком развитии событий.

В 1907 г. А. Н. Северцов доложил Киевскому обществу естествоиспытателей о результатах "проверки" биогенетического закона и предложил свою "теорию филэмбриогенезов". А. Н. Северцов писал, что "теория филэмбриогенеза пытается разрешить вопрос о том, как происходят и в какой период индивидуальной жизни возникают те изменения, которые ведут к филогенетическому преобразованию строения взрослого организма" (1939, 478).

Сущность взглядов А. Н. Северцова: "Филогенетическое изменение строения взрослых органов происходит путем изменения эмбрионального развития этих органов. Филогенез является, таким образом, функцией онтогенеза" (1939, 586). К сожалению, до сих пор остается неясным, "как" все происходит, а "период" определен слишком в общем виде. Северцов выделил такие виды филэмб-риогенезов: архаллаксис, девиация, анаболия. По мнению академика А. В. Иванова, после Северцова эта проблема специально изучалась лишь немногими зоологами, которые показали искусственность северцовской классификации модусов и сложную связь, существующую между ними. "В настоящее время ценность северцовского наследия ставится под сомнение. Были сделаны попытки выделить разные типы эмбриональных признаков... Эта классификация внутренне противоречива и недостаточно строга: у растений понятие ценогенезов всегда совпадает с понятием палингенезов, в результате чего применение их теряет смысл" (Тимофеев-Ресовский, 1981).

Принцип рекапитуляции

Современной интерпретацией биогенетического закона есть принцип рекапитуляции: повторение зародышами некоторых из эмбриональных стадий предков. В развитии высокоорганизованных организмов не всегда наблюдается строгое повторение стадий исторического развития. Только ранние стадии развития сохраняют наибольшую консервативность и поэтому рекапитулируют наиболее полно. Это связано с тем, что одним из наиболее важных механизмов интеграции ранних этапов эмбриогенеза есть эмбриональная индукция. К тому же, структуры зародыша, формирующиеся в первую очередь (хорда, нервная трубка, сомиты, кишка, глотка), представляют собой организационные центры зародыша, от которых зависит весь ход развития.

Генетическая основа рекапитуляции заключена в единстве механизмов генетического контроля развития, сохраняющемся на базе общих генов регуляции онтогенеза, которые достаются родственным группам организмов от общих предков.

Принцип рекапитуляции — всеобщий принцип, он проявляется на разных уровнях организации. Из споры мха прорастает зеленая нить - протонема, она очень похожа на зеленую нитчатую водоросль (организменный уровень). Голень у наземных позвоночных закладывается в виде двух костей, как у эмбрионов лягушки и стегоцефалов (органный уровень). Защитные иммунные реакции сложились в процессе длительной эволюции. Новый защитный механизм (образование антител) — сравнительно позднее приобретение животного мира. У миног появился примитивный тимус и антитела — иммуноглобулины класса М. У амфибий и рептилий уже имеются иммуноглобулины классов М и G. У птиц появляется третий класс иммуноглобулиноо — А, а у млекопитающих — Е. У человека есть иммуноглобулины класса Д. У плода человека вначале появляются иммуноглобулины М, после рождения –G иА, на втором году жизни начинается синтез иммуноглобулинов Е и Д.

№6

По способу питания организмы подразделяются на три группы.

1. Автотрофные организмы (автотрофный тип питания) – способны синтезировать органические вещества из неорганических.

Автотрофные фотосинтезирующие организмы (фотоавтотрофы), к которым относятся зеленые растения и фотосинтезирующие бактерии, при создании органических соединений непосредственно используют лучистую энергию Солнца – единственного источника энергии для живой природы Земли.

Все остальные живые существа используют энергию, заключенную в химических связях.

Автотрофные хемосинтезирующие организмы (хемоавтотрофы), к которым относятся некоторые бактерии, для синтеза органических соединений применяют энергию, выделяющуюся при окислении неорганических соединений (сероводорода, аммиака, железа и др.).

2. Гетеротрофные организмы (животные, грибы, незеленые растения, большинство бактерий) не способны самостоятельно синтезировать органические вещества из неорганических, они используют энергию химических связей готовых органических соединений (гетеротрофный тип питания).

Гетеротрофные организмы, в свою очередь, подразделяются на сапрофитов и паразитов. Сапрофиты, или сапротрофные организмы, питаются органическими веществами мертвых тел (большинство видов животных, бактерий и грибов). Паразиты, или паразитические организмы (болезнетворные бактерии, паразитические растения, животные, грибы), потребляют органические вещества живых организмов.

В результате этого наступил следующий важный этап в развитии жизни на Земле – этап кислородной, или аэробной, жизни.

Первые клетки, способные использовать энергию солнечного света, возникли, вероятно, около 3 млрд. лет назад. Это были одноклеточные сине-зеленые «водоросли». Окаменелые остатки таких клеток были найдены в слоях сланцев, относящихся к тому периоду в истории Земли, который называют архейской эрой. Потребовалось еще более 1 млрд. лет для насыщения атмосферы Земли кислородом и возникновения аэробных клеток.

Очевидно, что планетарная роль растений и иных фотосинтезирующих организмов исключительно велика: 1) они трансформируют энергию солнечного света в энергию химических связей органических соединений, которая используется всеми остальными живыми существами нашей планеты; 2) они насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения этим способом запасенной в них химической энергии аэробными клетками; 3) наконец, определенные виды растений в симбиозе с азотфиксирующими бактериями вводят газообразный азот атмосферы в состав молекул аммиака, его солей и органических азотсодержащих соединений. В почве есть и несимбиотические азотфиксирующие микроорганизмы.

Сохранение и расширение зеленого покрова Земли имеет решающее значение для всех живых существ, населяющих нашу планету. Естественно, что эта задача ложится на человека, несущего ответственность за сохранение жизни на Земле.

№7

Вещества циркулируют в клетке, будучи упакованными в мембраны ("передвижение содержимого клетки в контейне­рах"). Сортировка веществ и их передвижение связаны с нали­чием в мембранах комплекса Гольджи специальных белков-ре­цепторов. Транспорт через мембраны, в том числе и через плаз­матическую мембрану (цитолемму), является одной из важней­ших функций живых клеток. Различают два типа транспорта: пассивный и активный. Пассивный транспорт не требует затрат энергии, активный транспорт энергозависимый. Пассивный транспорт незаряженных молекул осуществляется по градиенту концентрации путем диффузии. Транспорт заряженных веществ зависит от разности потенциалов на поверхности цитолеммы. Как правило, внутренняя цитоплазматическая поверхность мембраны несет отрицательный заряд, что облегчает проникно­вение в клетку положительно заряженных ионов.

Переход ионов или молекул из зоны, где эти вещества нахо­дятся в более высокой концентрации, в зону с более низкой концентрацией получил название диффузии. Специфические транспортные белки, встроенные в мембрану, переносят через нее небольшие молекулы. Каждый транспортный белок осу­ществляет транспорт одного класса молекул или только одного соединения. Трансмембранные белки либо являются перенос­чиками, либо образуют «каналы». Диффузия может быть ней­тральной, когда незаряженные вещества проходят между липид­ными молекулами или через белки цитолеммы, формирующие каналы. «Облегченная» диффузия происходит при участии спе­цифических белков-переносчиков, связывающих вещество и переносящих его через мембрану. «Облегченная» диффузия протекает быстрее, чем нейтральная.

Активный транспорт осуществляют белки-переносчики. При этом расходуется энергия, возникающая вследствие гидролиза АТФ, а также разных потенциалов (зарядов) на различных по­верхностях мембраны. Активный транспорт происходит против градиента концентрации. На цитолемме с помощью натриево-­калиевого насоса поддерживается мембранный потенциал. Этот насос, накачивающий ионы К+ в клетку против градиентов кон­центрации, а ионы Na+ - во внеклеточное пространство, явля­ется ферментом АТФазой. Благодаря АТФазе ионы Na+ перено­сятся через мембрану и выводятся во внеклеточную среду, а ионы К+ переносятся внутрь клетки. АТФаза осуществляет также активный транспорт аминокислот и сахаров.

№8

Активный транспорт веществ происходит только в области клеточных мембран и носит однонаправленнный характер. Источником энергии для него служит расщепление макроэргических фосфатов . В процессе активного транспорта вещества могут переноситься против градиентов концентрации и благодаря этому накапливаться по одну сторону мембраны в значительных количествах.

Активный транспорт обладает следующими особенностями:

1. Для него необходима энергия (при недостатке кислорода , снижении температуры или действии ингибиторов метаболизма этот транспорт угнетается).

2. Он может происходить против электрохимического градиента, скорость такого транспорта довольно высока, однако она не может превысить некоторое значение насыщения.

3. Такой транспорт угнетается некоторыми веществами по типу конкурентного ингибирования.

В простейшем случае активный транспорт осуществляется гипотетическими переносчиками, располагающимися на поверхности клеточной мембраны. Возможно, что такие переносчики представляют собой ферменты, способные соединяться с веществом и переносить его в цитоплазму в виде комплекса субстрат-переносчик. На внутренней стороне мембраны переносчик освобождает транспортируемое вещество и диффундирует обратно к наружной стороне мембраны.

Существует еще одна разновидность активного транспорта - пиноцитоз . При этом плазматическая мембрана образует углубление вокруг мелких частиц вещества, затем края мембраны смыкаются и образуется пузырек, передвигающийся внутрь клетки.

№9

зависимости от происхождения гидролитических ферментов различают следующие типы пищеварения:

  • собственное пищеварение

  • симбиотное

  • аутолитическое.

Первый тип пищеварения - собственное пищеварение - осуществляется ферментами, синтезированными самим макроорганизмом, его железами, эпителиальными клетками, т.е. ферментами слюны, желудочного и поджелудочного соков, эпителия тонкой кишки.

Симбиотное пищеварение — гидролиз питательных веществ за счет ферментов, синтезированных симбиотами макроорганизма — бактериями и простейшими, населяющими желудочно-кишечный тракт. Симбиотное пищеварение у человека происходит главным образом в толстой кишке.

Аутолитическое пищеварение осуществляется за счет экзогенных гидролаз, которые содержатся в составе принимаемой пищи. Роль аутолитического пищеварения велика у новорожденных и при недостаточно развитом собственном пищеварении в период молочного вскармливания.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]