
- •Курс лекций по дисциплине «технические измерения и приборы»
- •Классификация измерительных преобразователей.
- •Тепловые измерительные преобразователи
- •Преобразователи сигналов и термосопротивление.
- •Преобразователи термопар:
- •Потенциометрический датчик
- •Преобразователь частоты-напряжения f/u или частоты-ток f/I
- •Датчики тока
- •Преобразователи и датчики температур
- •Измерительные преобразователи неэлектрических величин в электрические
- •Датчики измерители углов рассогласования и угловых скоростей.
- •Трансформаторная схема включения сельсинов.
- •Вращающиеся трансформаторы
- •Тахогенераторы Общие сведения и классификаторы
- •Тахогенераторы постоянного тока (тг пт)
- •Акселерометры
- •Измерительные преобразователи перемещения.
- •Фотоэлектрические датчики положения (фэдп).
- •Индукционные датчики положения
- •1. Измерения технологических параметров.
- •1.1. Государственная система приборов (гсп).
- •1.2. Точность преобразования информации.
- •1.3. Классификация кип.
- •1.4. Виды первичных преобразователей.
- •1.5. Методы и приборы для измерения температуры.
- •1.5.1 Классификация термометров.
- •1.5.2 Термометры расширения. Жидкостные стеклянные.
- •1.5.3 Термометры, основанные на расширении твердых тел.
- •1.5.4 Газовые манометрические термометры.
- •1.5.5 Жидкостные манометрические термометры.
- •1.5.6 Конденсационные манометрические термометры.
- •1.5.7 Электрические термометры.
- •1.5.8 Термометры сопротивления.
- •1.5.9 Пирометры излучения.
- •1.5.10 Цветовые пирометры.
- •1.6. Вторичные приборы для измерения разности потенциалов.
- •1.6.1 Пирометрические милливольтметры.
- •1.6.2 Потенциометры.
- •1.6.3 Автоматические электрические потенциометры.
- •1.7. Методы измерения сопротивления.
- •1.8. Методы и приборы для измерения давления и разряжения.
- •1.8.1 Классификация приборов для измерения давления.
- •I. По принципу действия:
- •1.9. Методы и приборы для измерения расхода пара, газа и жидкости.
- •1.9.1 Классификация.
- •1.9.2 Метод переменного перепада давления.
- •1.9.3 Расходомеры постоянного перепада давления.
- •1.9.4 Расходомеры переменного уровня.
- •1.10.4 Гидростатические уровнемеры.
- •1.10.5 Электрические методы измерения уровня.
- •3. Функциональные схемы автоматизации
- •3.1. Условные обозначения
- •3.2. Примеры построения условных обозначений приборов и средств автоматизации
- •3.3. Примеры схем контроля температуры.
- •Литература
- •Содержание
- •Часть 2. Средства автоматизации и управления.
- •ТакТильные чувствительные элементы
- •Примеры тактильных датчиков и их основные свойства
- •Список используемой литературы
- •Принципы измерения расстояний и линейных перемещений
- •Описание принципа работы и оптических схем интерферометров со счетом полос.
- •2.1 Интерферометр со счетом полос на основе квадратурных сигналов
- •2.2 Интерферометр со счетом полос на основе частотной модуляции
- •Сельсины
- •Устройство сельсинов
- •Некоторые особенности конструкции сельсинов
- •Дифференциальный сельсин
- •Магнитоэлектрические сельсины (магнесины)
- •Бесконтактные сельсины
- •Контактные сельсины
- •Тахометрические датчики
- •Электромагнитные тахометры угловой скорости
- •Тахометрический генератор постоянного тока
- •Устройство. Принцип действия.
- •Элементами устройства генератора являются:
- •Электромагнитные тахометры линейной скорости
- •Датчики с переменным магнитным сопротивлением
- •Оптический тахометр
- •Гирометры
- •Гироскопический измеритель скорости
- •Оптические гирометры
- •Пьезоэлектрические датчики
- •Перспективы развития пьезоэлектрических датчиков быстропеременных, импульсных и акустических давлений
- •Список литературы:
- •Измерение сил и их производных.
- •Измерение параметров вибрации.
- •Измерение расхода
- •1.Измерение сил и их производных
- •1.1. Измерение сил. Динамометры
- •1.1.1. Выбор динамометров
- •1.1.2. Электрические тензорезисторные динамометры.
- •1.1.3. Индуктивные динамометры.
- •1.1.4. Пьезоэлектрические динамометры.
- •1.1.5. Струнные динамометры.
- •1.1.6. Механические динамометры.
- •1.1.7. Гидравлические динамометры.
- •1.2. Измерение крутящих моментов
- •1.2.1. Преобразователи (датчики) крутящего момента.
- •1.2.2. Испытательные стенды.
- •1.3. Измерение массы и ее производных
- •1.3.1. Измерение массы взвешиванием. Масса, вес.
- •1.3.2. Мера массы. Прототип и образцовые гири.
- •1.3.3. Гири общего назначения.
- •1.4. Типы весов
- •1.4.1. Рычажные весы с уравновешиванием масс.
- •1.4.2. Пружинные весы
- •1.4.3. Гидравлические весы.
- •1.4.4. Электромагнитные весы.
- •2. Измерение параметров вибрации
- •2.1. Методы измерения вибрации
- •2.2. Примеры измерителей шума и вибрации
- •2.2.1. Измеритель шума и вибрации вшв-003-м3
- •2.2.2 Пример Сканирующего виброметра psv-400
- •3. Измерение расхода
- •3.1. Расходомеры и принцип их работы
- •3.2.Примеры расходомеров
- •3.2.1. Пример камерного расходомера
- •Камерный расходомер Тирэс-нп
- •3.3.2. Пример термомассового расходомера серии in-fl
- •3.2.3. Пример накладного ультразвукового расходомера жидких сред акрон
- •3.2.4. Пример кориолисового расходомера серии vrm
- •3.2.5. Пример вихревого расходомера серии yewflo
- •3.2.6. Пример термоанемометрического расходомера рга-100 (300)
- •3.2.7. Пример ротационного расходомера-счетчика
- •3.2.8.Примеры турбинных счетчиков воды (счетчики Вольтмана)
- •Классификация потенциометрических ип
- •2. По траектории перемещения:
- •3. По способу съема сигнала:
- •Техническая характеристика пип
- •Схемы включения
- •Примеры промышленных пип
- •Список источников
- •Методы и средства измерения давления
- •Единицы измерения давления
- •Методы и средства измерения давления
- •Глава 1. Методы прямых измерений давления
- •1.1. Жидкостные манометры
- •1.1.1. Основные типы жидкостных манометров и принципы их действия
- •1.1.2. Жидкостно-поршневые манометры
- •1.2. Поршневые манометры
- •1.2.1. Принцип действия, основы теории и типы поршневых манометров
- •1.3. Деформационные манометры
- •1.3.1. Основные принципы преобразования давления деформационным манометром
- •1.3.2. Упругие чувствительные элементы деформационных манометров (учэ)
- •1.3.3. Индуктивные и трансформаторные (взаимоиндуктивные) электромагнитные преобразователи
- •1.3.4. Резистивные деформационные манометры
- •Манометры с силовой компенсацией
- •1.3.5. Перспективы развития деформационных манометров
- •Глава 2. Методы косвенных измерений давления
- •2.1. Косвенные методы, основанные на уравнении состояния идеального газа
- •2.2. Косвенные методы, основанные на фазовых переходах
- •2.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды
- •Глава 3.Датчик для измерения избыточного давления Метран-43-ди (Модель 3163)
- •Принцип действия:
- •Методы измерения температуры
- •Понятие о температуре и о температурных шкалах
- •Устройства для измерения температур
- •1. Методы и технические средства измерения температуры
- •1.1 Термометры расширения и термометры манометрические Жидкостные стеклянные термометры
- •Манометрические термометры
- •1.2. Термоэлектрические термометры
- •Устройство термоэлектрических термометров
- •Стандартные и нестандартные термоэлектрические термометры
- •Поверка технических тт
- •1.3. Электрические термометры сопротивления
- •Типы и конструкции тс
- •Мостовые схемы измерения сопротивления термометров
- •Уравновешенный мост
- •Неуравновешенный мост
- •Автоматические уравновешенные мосты
- •1.4. Измерение термо-эдс компенсационным путем
- •1.5. Автоматические потенциометры
- •1.6. Бесконтактное измерение температуры Основные понятия и законы излучения
- •Пирометры частичного излучения
- •Оптические пирометры
- •Фотоэлектрические пирометры
- •Пирометры спектрального отношения
- •Пирометры суммарного излучения
- •Список литературы
- •1. Методы и технические средства измерения температуры 102
- •Введение
- •1. Оптические (фотоэлектрические) датчики
- •2. Принцип отражения объекта
- •3. Принцип пересечения луча
- •4. Принцип отражения луча от рефлектора
- •6. Принцип подавления заднего фона
- •7. Принцип подавления переднего фона
- •Список использованных источников
- •Ёмкостные преобразователи
- •Заключение
- •Список литературы
- •Назначение и устройство вращающихся трансформаторов
- •3.Cинуcнo-кocинуcный вpaщaющийcя тpaнcфopмaтop в cинуcнoм peжимe.
- •4.Cинуcнo-кocинуcный вpaщaющийcя тpaнcфopмaтop в cинуcнo-кocинуcнoм peжимe·
- •5.Линейный вращающийся трансформaтop
- •6.Редуктосины
- •8.Список литературы
- •Устройство индуктивного преобразователя.
- •Типы индуктивных преобразователей.
- •Индуктивный метод контроля. Принципиальные схемы.
- •Двухтактный индуктивный датчик. Дифференциальная схема.
- •Двухтактный индуктивный датчик. Мостовая схема.
- •Содержание
- •Список литературы
7. Принцип подавления переднего фона
Фотоэлектрические датчики с подавлением переднего фона применяются значительно реже по сравнению с датчиками с подавлением заднего фона. Этими датчиками обнаруживаются объекты в пределах задаваемой области сканирования. Объект между задним фоном (граница области сканирования) и датчиком надежно обнаруживается даже при его минимальных размерах.
Подавление переднего фона реализовано путем специального расположения фотоприемника и излучателя сигнала (рис. 11). Чтобы гарантировать надежную работу этих датчиков, задний фон (например, конвейерная лента) должен быть относительно светлым по цвету и не иметь значительных флуктуации по высоте.
Рис. 11. Принцип работы фотоэлектрического датчика с подавлением переднего фона
Датчики с подавлением переднего фона являются идеальным выбором для объектов с критичными поверхностями (прозрачные или зеркальные объекты), а также когда между объектами, движущимися по конвейерной ленте, имеются очень небольшие промежутки.
Среди достоинств этого типа фотоэлектрических датчиков следует выделить: возможность обнаружения объектов, незначительно выступающих по высоте на конвейерной ленте, обнаружение объектов с неровной и неоднородной поверхностью, обнаружение небольших объектов с очень высокой точностью, специализация для работы в упаковочной промышленности. К недостаткам можно отнести возможность появления проблем при неправильной настройке конвейера, дороговизна этого типа датчиков по сравнению с фотоэлектрическими датчиками с отражением от рефлектора, а также небольшой ассортимент датчиков с подавлением переднего фона.
Все сложности, которые были описаны для датчиков с подавлением заднего фона, характерны и для этого типа фотоэлектрических датчиков.
В отдельную группу по своим конструктивным особенностям можно выделить фотоэлектрические датчики с оптоволоконным кабелем. В этом случае электрическая часть датчика находится в доступном и безопасном месте, а приемник и передатчик датчика вынесены непосредственно в зону детектирования. Они передают световой сигнал к усилителю по оптоволоконному кабелю. В этих типах датчиков также существуют все методы обнаружения (отражение от объекта, на основе пересечения луча и т.д.).
Фотодатчики с оптоволокном незаменимы при решении задач обнаружения в труднодоступных местах и зонах с тяжелыми условиями окружающей среды. Этот тип датчиков может применяться при ударных воздействиях, вибрации, высокой температуре и сильных магнитных полях в зоне измерения, а также при проблемах с пространством для установки датчика. Принцип работы датчика с оптоволокном показан на рисунке 12.
Рис. 12. принцип работы фотоэлектрического датчика с оптоволоконным кабелем
Следует заметить, что один усилительный блок работает с множеством оптических кабелей, различающихся и по методу обнаружения и по конструктивным особенностям, так что пользователю не требуется менять весь датчик при изменении задачи управления.
Достаточно ответственной задачей является правильный выбор оптоволоконного кабеля. Существует два типа оптоволокна: пластиковое (диаметр 10...70 мкм) и стеклянное (0,5...1,5 мм). Конструкция таких типов оптоволоконных кабелей показана на рисунках 13 и 14.
Рис. 13. Конструкция пластикового оптоволоконного кабеля
Рис. 14. конструкция стеклянного оптоволоконного кабеля
Преимуществами пластикового кабеля являются невысокая цена и нечувствительность к вибрациям и узкий рабочий диапазон температур: -40…70°С.
Что касается стеклянного оптоволокна, то из достоинств можно отметить значительную длину кабеля (до 10 м), возможность работы при высоких температурах, низкий вес, возможность реализации взрывозащиты, нечувствительность к ударам. Слабые стороны — это высокая цена и определенные проблемы при работе в запыленных помещениях[6].
В заключение хотелось бы упомянуть о некоторых практических примерах использования фотоэлектрических датчиков. Как говорилось ранее, все фотоэлектрические датчики компании SICK делятся на миниатюрные, компактные, стандартные и датчики с круглым сечением корпуса. Остановимся на миниатюрной серии W2 (см. рис. 15).
Рис. 15. Фотоэлектрический датчик серии W2
Датчик обладает сверхмалыми размерами 7,6 х 20,6 х х 12,5 мм, но сохраняет при этом функциональные возможности стандартных фотоэлектрических изделий. Говоря о данной серии можно отметить следующее: — размер светового пятна сопоставим с лазерным пятном, что позволяет датчику обнаруживать даже очень маленькие объекты;
— датчик, обладая степенью защиты IP67, является отличной альтернативой датчикам с оптоволоконным кабелем;
— наличие датчиков со сверхточным подавлением заднего фона на диапазон 15 и 30 мм;
— наличие датчика с отражением от объекта на диапазон 50 мм;
— наличие датчиков с отражением от рефлектора и на основе пересечения луча с рабочим диапазоном на 1200 мм.
Примеры некоторых областей использования можно увидеть на рисунке 16. Как видно из этих немногочисленных примеров, фотоэлектрические датчики могут применяться для решения самых различных задач как на производстве, так и в повседневной жизни[7].
Рис. 16. Область применения фотоэлектрического датчика серии W2