
- •Курс лекций по дисциплине «технические измерения и приборы»
- •Классификация измерительных преобразователей.
- •Тепловые измерительные преобразователи
- •Преобразователи сигналов и термосопротивление.
- •Преобразователи термопар:
- •Потенциометрический датчик
- •Преобразователь частоты-напряжения f/u или частоты-ток f/I
- •Датчики тока
- •Преобразователи и датчики температур
- •Измерительные преобразователи неэлектрических величин в электрические
- •Датчики измерители углов рассогласования и угловых скоростей.
- •Трансформаторная схема включения сельсинов.
- •Вращающиеся трансформаторы
- •Тахогенераторы Общие сведения и классификаторы
- •Тахогенераторы постоянного тока (тг пт)
- •Акселерометры
- •Измерительные преобразователи перемещения.
- •Фотоэлектрические датчики положения (фэдп).
- •Индукционные датчики положения
- •1. Измерения технологических параметров.
- •1.1. Государственная система приборов (гсп).
- •1.2. Точность преобразования информации.
- •1.3. Классификация кип.
- •1.4. Виды первичных преобразователей.
- •1.5. Методы и приборы для измерения температуры.
- •1.5.1 Классификация термометров.
- •1.5.2 Термометры расширения. Жидкостные стеклянные.
- •1.5.3 Термометры, основанные на расширении твердых тел.
- •1.5.4 Газовые манометрические термометры.
- •1.5.5 Жидкостные манометрические термометры.
- •1.5.6 Конденсационные манометрические термометры.
- •1.5.7 Электрические термометры.
- •1.5.8 Термометры сопротивления.
- •1.5.9 Пирометры излучения.
- •1.5.10 Цветовые пирометры.
- •1.6. Вторичные приборы для измерения разности потенциалов.
- •1.6.1 Пирометрические милливольтметры.
- •1.6.2 Потенциометры.
- •1.6.3 Автоматические электрические потенциометры.
- •1.7. Методы измерения сопротивления.
- •1.8. Методы и приборы для измерения давления и разряжения.
- •1.8.1 Классификация приборов для измерения давления.
- •I. По принципу действия:
- •1.9. Методы и приборы для измерения расхода пара, газа и жидкости.
- •1.9.1 Классификация.
- •1.9.2 Метод переменного перепада давления.
- •1.9.3 Расходомеры постоянного перепада давления.
- •1.9.4 Расходомеры переменного уровня.
- •1.10.4 Гидростатические уровнемеры.
- •1.10.5 Электрические методы измерения уровня.
- •3. Функциональные схемы автоматизации
- •3.1. Условные обозначения
- •3.2. Примеры построения условных обозначений приборов и средств автоматизации
- •3.3. Примеры схем контроля температуры.
- •Литература
- •Содержание
- •Часть 2. Средства автоматизации и управления.
- •ТакТильные чувствительные элементы
- •Примеры тактильных датчиков и их основные свойства
- •Список используемой литературы
- •Принципы измерения расстояний и линейных перемещений
- •Описание принципа работы и оптических схем интерферометров со счетом полос.
- •2.1 Интерферометр со счетом полос на основе квадратурных сигналов
- •2.2 Интерферометр со счетом полос на основе частотной модуляции
- •Сельсины
- •Устройство сельсинов
- •Некоторые особенности конструкции сельсинов
- •Дифференциальный сельсин
- •Магнитоэлектрические сельсины (магнесины)
- •Бесконтактные сельсины
- •Контактные сельсины
- •Тахометрические датчики
- •Электромагнитные тахометры угловой скорости
- •Тахометрический генератор постоянного тока
- •Устройство. Принцип действия.
- •Элементами устройства генератора являются:
- •Электромагнитные тахометры линейной скорости
- •Датчики с переменным магнитным сопротивлением
- •Оптический тахометр
- •Гирометры
- •Гироскопический измеритель скорости
- •Оптические гирометры
- •Пьезоэлектрические датчики
- •Перспективы развития пьезоэлектрических датчиков быстропеременных, импульсных и акустических давлений
- •Список литературы:
- •Измерение сил и их производных.
- •Измерение параметров вибрации.
- •Измерение расхода
- •1.Измерение сил и их производных
- •1.1. Измерение сил. Динамометры
- •1.1.1. Выбор динамометров
- •1.1.2. Электрические тензорезисторные динамометры.
- •1.1.3. Индуктивные динамометры.
- •1.1.4. Пьезоэлектрические динамометры.
- •1.1.5. Струнные динамометры.
- •1.1.6. Механические динамометры.
- •1.1.7. Гидравлические динамометры.
- •1.2. Измерение крутящих моментов
- •1.2.1. Преобразователи (датчики) крутящего момента.
- •1.2.2. Испытательные стенды.
- •1.3. Измерение массы и ее производных
- •1.3.1. Измерение массы взвешиванием. Масса, вес.
- •1.3.2. Мера массы. Прототип и образцовые гири.
- •1.3.3. Гири общего назначения.
- •1.4. Типы весов
- •1.4.1. Рычажные весы с уравновешиванием масс.
- •1.4.2. Пружинные весы
- •1.4.3. Гидравлические весы.
- •1.4.4. Электромагнитные весы.
- •2. Измерение параметров вибрации
- •2.1. Методы измерения вибрации
- •2.2. Примеры измерителей шума и вибрации
- •2.2.1. Измеритель шума и вибрации вшв-003-м3
- •2.2.2 Пример Сканирующего виброметра psv-400
- •3. Измерение расхода
- •3.1. Расходомеры и принцип их работы
- •3.2.Примеры расходомеров
- •3.2.1. Пример камерного расходомера
- •Камерный расходомер Тирэс-нп
- •3.3.2. Пример термомассового расходомера серии in-fl
- •3.2.3. Пример накладного ультразвукового расходомера жидких сред акрон
- •3.2.4. Пример кориолисового расходомера серии vrm
- •3.2.5. Пример вихревого расходомера серии yewflo
- •3.2.6. Пример термоанемометрического расходомера рга-100 (300)
- •3.2.7. Пример ротационного расходомера-счетчика
- •3.2.8.Примеры турбинных счетчиков воды (счетчики Вольтмана)
- •Классификация потенциометрических ип
- •2. По траектории перемещения:
- •3. По способу съема сигнала:
- •Техническая характеристика пип
- •Схемы включения
- •Примеры промышленных пип
- •Список источников
- •Методы и средства измерения давления
- •Единицы измерения давления
- •Методы и средства измерения давления
- •Глава 1. Методы прямых измерений давления
- •1.1. Жидкостные манометры
- •1.1.1. Основные типы жидкостных манометров и принципы их действия
- •1.1.2. Жидкостно-поршневые манометры
- •1.2. Поршневые манометры
- •1.2.1. Принцип действия, основы теории и типы поршневых манометров
- •1.3. Деформационные манометры
- •1.3.1. Основные принципы преобразования давления деформационным манометром
- •1.3.2. Упругие чувствительные элементы деформационных манометров (учэ)
- •1.3.3. Индуктивные и трансформаторные (взаимоиндуктивные) электромагнитные преобразователи
- •1.3.4. Резистивные деформационные манометры
- •Манометры с силовой компенсацией
- •1.3.5. Перспективы развития деформационных манометров
- •Глава 2. Методы косвенных измерений давления
- •2.1. Косвенные методы, основанные на уравнении состояния идеального газа
- •2.2. Косвенные методы, основанные на фазовых переходах
- •2.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды
- •Глава 3.Датчик для измерения избыточного давления Метран-43-ди (Модель 3163)
- •Принцип действия:
- •Методы измерения температуры
- •Понятие о температуре и о температурных шкалах
- •Устройства для измерения температур
- •1. Методы и технические средства измерения температуры
- •1.1 Термометры расширения и термометры манометрические Жидкостные стеклянные термометры
- •Манометрические термометры
- •1.2. Термоэлектрические термометры
- •Устройство термоэлектрических термометров
- •Стандартные и нестандартные термоэлектрические термометры
- •Поверка технических тт
- •1.3. Электрические термометры сопротивления
- •Типы и конструкции тс
- •Мостовые схемы измерения сопротивления термометров
- •Уравновешенный мост
- •Неуравновешенный мост
- •Автоматические уравновешенные мосты
- •1.4. Измерение термо-эдс компенсационным путем
- •1.5. Автоматические потенциометры
- •1.6. Бесконтактное измерение температуры Основные понятия и законы излучения
- •Пирометры частичного излучения
- •Оптические пирометры
- •Фотоэлектрические пирометры
- •Пирометры спектрального отношения
- •Пирометры суммарного излучения
- •Список литературы
- •1. Методы и технические средства измерения температуры 102
- •Введение
- •1. Оптические (фотоэлектрические) датчики
- •2. Принцип отражения объекта
- •3. Принцип пересечения луча
- •4. Принцип отражения луча от рефлектора
- •6. Принцип подавления заднего фона
- •7. Принцип подавления переднего фона
- •Список использованных источников
- •Ёмкостные преобразователи
- •Заключение
- •Список литературы
- •Назначение и устройство вращающихся трансформаторов
- •3.Cинуcнo-кocинуcный вpaщaющийcя тpaнcфopмaтop в cинуcнoм peжимe.
- •4.Cинуcнo-кocинуcный вpaщaющийcя тpaнcфopмaтop в cинуcнo-кocинуcнoм peжимe·
- •5.Линейный вращающийся трансформaтop
- •6.Редуктосины
- •8.Список литературы
- •Устройство индуктивного преобразователя.
- •Типы индуктивных преобразователей.
- •Индуктивный метод контроля. Принципиальные схемы.
- •Двухтактный индуктивный датчик. Дифференциальная схема.
- •Двухтактный индуктивный датчик. Мостовая схема.
- •Содержание
- •Список литературы
Измерительные преобразователи неэлектрических величин в электрические
Рассмотрим два типа наиболее употребляемых датчиков давления:
с
ильфонные;P
м
агнитоупругие; жидкость
поршного типа
Un
У
Сильфонные датчики давления газов состоят из гофрированной трубки (1), рейки (2) и зубчатого колеса (3) связанного с щеткой потенциометра. Под действием давления Р сильфон сжимается и перемещает рейку. При этом зубчатое колесо будет перемещать ползушку потенциометра, изменяя снимаемое с выхода потенциометра напряжение Uвых=KP–давл.
3
Un
2
Uвых=KPUвых
1
Магнитоупругий
чувствительныйэлемент
датчикадавления
Un
Сильфонный
датчик давления а) газов
б) жидкости
При измерения давления жидкостей используется другая конструкция сильфонного датчика. Сильфон сжимаясь, перемещает движок (ползушку) потенциометра. Наличие жидкости в сильфоне с массой mж приводит к дифференциальному уравнению
где x– перемещение рейки сильфона
D- коэффициент вязкого трения
kc– коэффициент упругости сильфона
Fc – площадь сильфона
, или
;
;
Магнитоупругие датчики давления основаны
на свойстве изменения магнитной
проницаемости от сил сжатия или
растяжения. Конструктивно магнитный
элемент датчика давления выполняется
из стальной трубки (1) , на которую
напрессовывается трубка (2) из инвара.
Внутри помещается катушка дросселя
(3). Давление, поступающее на вход трубки
1 вызывает сжатие (растяжение) трубки
2, что приводит к изменению ее магнитной
проницаемости. Изменение магнитной
проницаемости определяется путем
измерения коэффициента самоиндукции
дросселя
,
где
w– число витка,e– длина магнитного провода,m– магнитная проницаемость,F– площадь.
Зависимость
изменения магнитной проницаемости от
давления
mна рис.1 Датчик обладает высоким
быстродействием,
малыми габаритами и применяется при измерении высокого давления.
p
Датчики измерители углов рассогласования и угловых скоростей.
В САР часто приходится измерять силовые положения валов (задающего и исполнительного) или углы рассогласования между ними. Для этой цели наибольшее распространение получили индукционные сельсипные датчики. По конструкции сельсины относят к машинам переменного тока. Обмотки возбуждения могут располагаться на статоре или роторе.
Когда обмотка возбуждения выполняется однофазной и располагается на статоре, тогда статор выполняется с явно выраженными полюсами. В этом случае на роторе
располагается
три обмотки, соединенные в звезду, причем
магнитные
оси обмоток сдвинуты между собой на
120о. Три
конца
этих обмоток выводятся на три кольца
коллектора.
Большие
габариты , но высокая точность.
Если
обмотка возбуждения выполняется
трехфазной и
располагается на статоре то ротор делается явно выраженным и на него укладывается однофазная обмотка. Эта обмотка присоединяется к
двухколлекторным
кольцам. Малые габариты, но меньшая
точность.
Сельсипы
работают в двух режимах силовом
(индикатор) или трансформаторном.
Силовой режим:
β В
этом случае имеется два сельсина:
α
сельсин-датчик
и сельсин-приемник,
которые
включены в общую одно-
фазную
цепь переменного тока.
ротор
i1
S1S’1 Статоры
обратного соединения.
Поворачивая
ротор на угол α сΔ
CcΔCcП в этой цепи статора
создаются токи
i1,i2,i3, который вызывают
S2
S’2 магнитный
поток в обмотке
S3S’3 статора
СП, взаимодействие
i2 которых с магнитным потоком
ротора
СП вызывает вращающий
момент
Мсп= Мmaxf(α-β) и ротор
i3 СП повернется на угол β.
Статор