Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЗА, 8 сем / ТИиП ЗА, 8 сем / Лекции по ТИиП изм.09.12.08.doc
Скачиваний:
989
Добавлен:
30.03.2015
Размер:
16.01 Mб
Скачать
  1. 3. Измерение расхода

Измерение расхода - важная задача управления технологическими процессами и учетом, а именно, это измерение расхода абразивных и агрессивных жидкостей, с содержанием нерастворенных частиц, адгезионных (налипающих) жидкостей и др. Для решения этой задачи применяются расходомеры.

  1. 3.1. Расходомеры и принцип их работы

Расходомер это прибор измеряющий массу и контролирующий поток походящей через него жидкости или газа. Единицами измерения таких приборов обычно являются объем (объемные расходмеры) либо масса (массовые расходмеры) протекающей через него жидкости (газа).

Расходометры бывают разных типов:

- камерный

- термомассовый

- ультразвуковой

- кориолисовый

- вихревой

- термоанемометрический

- турбинный

- ротационный

Камерными называются тахометрические расходомеры и счетчики, подвижные элементы которых приходят в движение (непрерывное или периодическое) под давлением измеряемой жидкости или газа и при этом отмеривают определенные объемы или массы измеряемого вещества. Этот принцип измерения позволяет точно измерять расход высоковязких веществ (НЕФТЬ, МАЗУТ), точность измерения при этом составляет 0,2...0,5%.

Термомассовыми называются расходомеры, принцип действия которых основан на зависимости между потерей тепла непрерывно нагреваемого тела и скоростью газа или жидкости, в которых это тело находится. К достоинствам термомассовым расходомерам относится большой диапазон измеряемых скоростей, начиная от весьма малых, и высокое быстродействие. Этот метод позволяет измерять "напрямую" массовый расход газа, жидкости.

Ультразвуковыми называются расходомеры, основанные на измерении зависящего от расхода того или другого эффекта, возникающего при проходе акустических колебаний через поток жидкости или газа. Ультразвуковые расходомеры обычно служат для измерения объемного расхода жидкости или газа. Разделяются на расходомеры, основанные на перемещении акустических колебаний движущейся средой, и расходомеры, основанные на эффекте Доплера.

Кориолисовыми называются расходомеры, в преобразователях которых под влиянием силового воздействия возникает кориолисово ускорение, зависящее от расхода. Поступательное движение среды во вращательном движении сенсорной трубки приводит к возникновению кориолисова ускорения, которое, в свою очередь, приводит к появлению кориолисовой силы. Сила Кориолиса прямо пропорциональна массовому расходу жидкости или газа. Кориолисовый расходомер напрямую измеряет массовый расход, плотность и температуру с высокой точностью (до 0,1...0,15%).

Лазерные расходомеры – измеряют расход газа методами лазерной доплеровской интерферометрии. Первые результаты по этой теме были получены в 1964 г., но развитие этих методов долгое время сдерживалось малой надежностью и стабильностью факторов, влияющих на точность. В настоящее время в связи с развитием твердотельной техники и технологии и достаточной статистики по исследованию потоков существуют условия для разработки и внедрения промышленных образцов систем коммерческого учета объемного расхода газа и жидких сред при их транспортировке. В России подобные разработки ведёт НПФ «Вымпел» в содружестве с Physikalisch-Technische Bundesanstalt (Германия) с целью создания расходомера (ЛДР) для измерения объемного расхода газа в трубопроводе большого диаметра.

Термоанемометрические счётчики – принцип их действия заключается в измерении скорости потока газа в отдельной точке трубы, с последующим вычислением расхода газа путём умножения данной величины на площадь поперечного сечения трубы и коэффициент зависящий от характера распределения скоростей в потоке газа через поперечное сечение трубы. У измерителей расхода данного типа имеется одно или несколько термосопротивлений через которые течёт электрический ток нагревая их, поток газа, в свою очередь охлаждает эти терморезисторы, скорость охлаждения пропорциональна теплоёмкости окружающей среды, зависящей от массового расхода газа.

Ротационные счётчики – принцип их действия основан на вытеснении некоторых фиксированных объёмов газа (количество вытесненных объёмов пропорционально числу оборотов роторов данных счётчиков) за единицу времени. Основное применение из ротационных нашли счетчики газа с одинаковыми роторами восьмеркообразной формы. За один оборот роторов вытесняются четыре заштрихованных объема. Протечки газа зависят от зазора между корпусом и прямоугольными площадками, расположенными на концах наибольших диаметров роторов. В зависимости от типоразмера счетчика зазоры могут быть от 0,04 до 0,1 мм. Острые кромки на концах этих площадок способствуют самоочистке счетчика. Синхронизация вращения роторов, как правило, достигается зубчатых колес, укрепленных на обоих концах роторов вне пределов измерительной камеры. Роторы подвергаются статической балансировке.

Турбинные счётчики - они выполнены в виде трубы, в которой расположена винтовая турбинка, как правило с небольшим перекрытием лопаток одной другую. В проточной части корпуса расположены обтекатели перекрывающие большую часть сечения трубопровода, чем обеспечивается дополнительное выравнивание эпюры скоростей потока и увеличение скорости течения газа. Кроме того происходит формирование турбулентного режима течения газа, за счет чего обеспечивает линейность характеристики счетчика газа в большом диапазоне. Высота турбинки как правило не превышает 25-30% радиуса. На входе в счетчик в ряде конструкций предусмотрен дополнительный струевыпрямитель потока выполненный или в виде прямых лопаток или в виде «толстого» диска с отверстиями разного диаметра. Установка сетки на входе турбинного счетчика, как, правило, не применяется, так как ее засорение уменьшает площадь проходного сечения трубопровода, соответственно увеличивает скорость течения потока, что приводит к увеличению показаний счетчика. Преобразование скорости вращения в турбинке в объемные значения количества прошедшего газа осуществляется путем передачи вращения турбинки через магнитную муфту на счетный механизм, в котором путем подбора пар шестеренок (во время градуировки) обеспечивается линейная связь между скоростью вращением турбинки и количеством пройденного газа. Другим методом получения результата количества пройденного газа в зависимости от скорости вращения турбинки является использование для индикации скорости магнитоиндукционного преобразователя. Лопатки турбинки при прохождении вблизи преобразователя возбуждают в нем электрический сигнал, поэтому скорость вращения турбинки и частота сигнала с преобразователя пропорциональны. При таком методе преобразование сигнала осуществляется в электронном блоке, так же как и вычисление объема прошедшего газа. Для обеспечения взрывозащищенности счетчика блок питания должен быть выполнен с взрывозащитой. Однако применение электронного блока упрощает вопрос расширения диапазона измерения счетчика (для счетчика с механическим счетным механизмом 1:20 или 1:30), так как нелинейность характеристики счетчика, проявляющаяся на малых расходах, легко устраняется применением кусочно-линейной апроксимацией характеристики (до 1:50), чего в счетчике с механической счетной головкой сделать нельзя.