Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
88
Добавлен:
30.03.2015
Размер:
4.01 Mб
Скачать

12.2 Электрохимия

В основе электрохимии лежит явление электролиза в электрических цепях, в которых основными элементами являются электролиты – растворы кислот, щелочей и солей, а также электроды – анод, соединяемый с положительным полюсом источника и катод – с отрицательным полюсом.

В результате электролиза на катоде из растворов кислот и щелочей выделяется водород, а из водных растворов солей — металл данной соли.

Область техники, в которой используется электролиз (отложение металла на катоде и растворение металлического анода) называется гальванотехникой и включает в себя гальванопластику (технологию воспроизведения металлических копий различных рельефных предметов), гальваностегию (технологию покрытия металлов слоем другого металла с целью защиты их от коррозии: никелирование и хромирование) и электрометаллургию (технологию извлечения металлов из руды и примесей, очищение металлов от примесей – рафинирование).

Электрохимические процессы имеют место при электроосмосе, под которым понимают явление проникновения блуждающих токов Iбл в землю, вызванное внешними источниками электрической энергии; рельсовым электротранспортом, электросварочными установками гальванических цехов.

Рисунок 12.2. – Схема электрической цепи при наличии электроосмоса

Электроэнергия от подстанции 1 по контактному проводу 2 подается к электротранспорту 3 и через рельсы 4 растекается в земле в виде блуждающих токов 6, которые участвуют в электрохимических процессах с металлическими элементами 5 коммуникаций и сооружений (МЭКС). Подземные МЭКС — кабели в металлических оболочках, металлические трубопроводы, арматура железобетонных конструкций и фундаментов, расположенных в зоне электроосмоса, подвергаются не только коррозии, обусловленной воздействием почвенных химических реагентов (растворов солей, кислот, щелочей), но и электрокоррозии блуждающими токами 6. Сила блуждающих токов может быть подсчитана по формуле:

(12.1)

где Rp – сопротивление токоведущих частей, рельсов, Ом/м;

Rпер – сопротивление перехода рельсы - почва, изоляции тоководов, Ом/м;

Iэ – ток в цепи электропотребителя, А.

Из (12.1) следует, что токи электроосмоса можно уменьшить и снизить электрокоррозию МЭКС, если сократить расстояние l между контактами потребителя с землей и источником, снизить его нагрузку Iэ, увеличить переходное сопротивление (изоляцию тоководов) и уменьшить сопротивление токоведущих частей (рельсов).

Для увеличения переходного сопротивления, сопротивления электрической изоляции в строительстве применяют базальт, фарфор, диабаз, стекло, пластмассы и др.

12.3 Электронно-ионная технология

12.3.1 Общие сведения. В электронно-ионной технологии (ЭИТ) используются явления, происходящие при прохождении электрического тока (разряде) в газах.

В качестве примера применения ЭИТ приведем электрофильтрацию, которая используется для очистки промышленных газов и воздуха от пыли, дыма, частиц цемента и т.п.

В основе работы электрического фильтра лежит использование явления ионизации газов с помощью коронного разряда, зарядки удаляемых частиц ионизированными атомами газа и осаждения заряженных частиц на корпус (электроде) осадительной камеры.

Коронный разряд (КР) наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) и сильно неоднородном электрическом поле.

Для получения значительной неоднородности поля один электрод должен иметь очень большую поверхность, а другой – очень малую.

Коронный разряд можно получить, располагая тонкую проволоку внутри металлического цилиндра, радиус которого значительно больше радиуса проволоки (рис.12.3).

Рисунок 12.3. – Схемаполучения коронного разряда

Силовые линии электрического поля сгущаются по мере приближения к проволоке, следовательно, напряженность электрического поля возле проволоки имеет наибольшее значение. Когда она достигает значения 3·106 В/м (при атмосферном давлении и нормальной температуре) между проволокой и цилиндром зажигается разряд и в цепи появляется ток. При этом возле проволоки возникает свечение, имеющее вид оболочки или короны, окружающей проволоку.

Процессы внутри короны сводятся к следующему. Если проволока заряжена отрицательно, то по достижении напряженности пробоя у поверхности проволоки зарождаются электронные лавины, которые распространяются от проволоки к цилиндру. Так как напряженность поля уменьшается по мере удаления от проволоки, то на некотором расстоянии от проволоки электронные лавины обрываются. Это расстояние и есть толщина короны.

Электроны вышедшие за пределы короны, присоединяются к нейтральным атомам газа, отчего возникают отрицательные ионы. Таким образом, за пределами короны газ ионизирован.

Коронный разряд может возникнуть не только возле проволок, но и возле любых проводников с малой поверхностью. Корона возникает иногда в природе под влиянием атмосферного электрического поля и появляется на верхушках деревьев, корабельных мачт и т.д. В старину это явление получило название огней св. Эльма и вызывало суеверный ужас у мореплавателей.

С возможностью возникновения коронного разряда приходится считаться в технике высоких напряжений. При зажигании короны возле проводов высоковольтных ЛЭП окружающий воздух сильно ионизируется и появляются вредные токи утечки. Чтобы коронный разряд не мог возникнуть, провода высоковольтных линий должны иметь достаточно большой диаметр.

12.3.2 Принцип действия электрофильтра. Электрофильтр состоит из трех основных частей: камеры осаждения с системой электродов, через которую проходит газ, подлежащий очистке; системы удаления осадков (коллекторные пластины — бункер); электрической схемы и оборудования, составляющего схему автоматизации.

На рисунке 12.4 показана схема электрофильтра. Камера осаждения 5 заканчивается в нижней части бункером 6, в котором собираются осажденные на электродах-коллекторах частицы для их дальнейшего удаления.

Рисунок 12.4. – Схема электрофильтра

Электродами-коллекторами в данной конструкции служат сами стенки камеры 4, которая снабжена устройством ввода загрязненного газа 1, проходящего в электрофильтре через электрическое поле, созданное электродом высокого напряжения 7 и электродом-коллектором 4. При прохождении газа взвешенные частицы заряжаются, осаждаются, после чего удаляются. Таким образом, на выходе 2 из электрофильтра газ оказывается очищенным благодаря удержанию электродами-коллекторами отрицательно заряженных частиц.

Электрическое поле создается в электрофильтре между коронирующим и излучающим электродом 7 и коллектором '4 источника высокого напряжения 8, питающим систему коронирующих электродов через проходной изолятор 3. Устройство автоматического управления 9 поддерживает заданные параметры технологического режима.

В технике очистки газов существуют четыре способа:

а) осаждение Пыли в электрофильтрах при помощи электрического поля;

б) обеспыливание газов при прохождении через поглощающие слои;

в) центрифугирование содержащих пыль газов;

г) обеспыливание газов в мойках.

Наиболее перспективными являются электрические фильтры, работающие по принципу осаждения пыли при помощи электрического поля.

Электростатическое обеспыливание считается большинством специалистов наиболее простым средством захвата взвесей, имеющихся в других технологических процессах.