Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lec_3-Hardware-1.doc
Скачиваний:
36
Добавлен:
30.03.2015
Размер:
634.88 Кб
Скачать

Архитектура видеоадаптера

Необходимость в создании отдельного контроллера, обеспечивающего вывод изображения, была вызвана тем, что использовавшиеся в первых ПК мониторы были построены по ЭЛТ-технологии. Для управления электронно-лучевой трубкой необходим аналоговый сигнал. Преобразование цифровой информации об изображении в аналоговый управляющий сигнал и стало первой задачей графических адаптеров. Любой, в том числе и современный, графический адаптер содержит три цифроаналоговых преобразователя-ЦАП-(по одному на каждый из основных цветов) и память — так называемый кадровый буфер. Информация о каждой точке экрана считывается последовательно из кадрового буфера и превращается в аналоговый сигнал цифроаналоговым преобразователем. Модуль, состоящий из кадрового буфера (RAM) и трех ЦАП (DAC) носит название RAMDAC. Для построения изображения с разрешением 1600*1200 при частоте обновления экрана 75 Гц необходимо 144 млн. обращений к кадровому буферу в секунду, т. е. RAMDAC должен работать на частоте 144 МГц. Современные графические адаптеры оснащаются 400 МГц RAMDAC, которые обеспечивают получение изображения с гораздо большим разрешением. Что касается цветопередачи, то для формирования изображения с 16 млн. цветов необходимо использовать 24 бит информации на точку — 8 бит на каждый цветовой канал. Используемые в настоящее время RAMDAC оборудованы, как правило, 10 разрядными ЦАП. Необходимо отметить, что современные графические микросхемы оснащаются, как правило, сразу двумя RAMDAC, что позволяет вывести изображение одновременно на два монитора.

Интерфейсы и память.

Объем информации, обрабатываемый RAMDAC, достаточно велик — легко посчитать, что для разрешения 1600*1200 при частоте 75 Гц и 24_бит цвете необходимо обработать 432 Мбайт за каждую секунду. Первые графические адаптеры имели интерфейс PCI и делили ресурсы этой шины с другими PCI-устройствами. Поэтому особенно важен объем памяти графического адаптера: поместив в видеопамять информацию, полностью описывающую кадр, можно было освободить шину на время его обработки. Однако учитывая, что даже при разрешении 1024*768, частоте 60 Гц и 16_бит цвете графическому контроллеру требовалось более двух третей общей пропускной способности (около 95 из 133 Мбайт/с, обеспечиваемых 32-разрядной шиной PCI), даже самое экономное использование ресурсов шины не спасало положения.

Решением стало применение интерфейса AGP (Accelerated Graphics Port), представляющего собой выделенный канал, соединяющий только два устройства — графический контроллер и системное ОЗУ.

С появлением графических ускорителей первого и второго поколения требования к быстродействию интерфейса и объему памяти значительно возросли. Объем информации о 3D-сцене, передаваемой ускорителю с блоком T&L, составляет десятки мегабайт. Более того, в процессе обработки этой информации контроллер получает множество промежуточных данных, которые также хранит в видеопамяти. Поэтому современные графические адаптеры очень требовательны к быстродействию подсистемы памяти и объему видеоОЗУ. Как правило, платы с самыми высокопроизводительными микросхемами оснащаются 128/256-Мбайт видеоОЗУ. Новейшие графические процессоры имеют четырехканальные контроллеры памяти со 128- и даже 256-разрядной шиной и совместимы с памятью DDR второго, а самые современные — и третьего поколения.

Используемая в настоящее время третья модификация интерфейса AGP обеспечивает пропускную способность 2,1 Гбайт/с, что вполне достаточно даже для самых мощных графических ускорителей, однако, уже началась замена на последовательную шина PCI Express.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]