Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экспрессия генов Патрушев

.pdf
Скачиваний:
1049
Добавлен:
30.03.2015
Размер:
7.15 Mб
Скачать

281

связывающий домен, домен, участвующий в связывании гормона, а также домены, необходимые для активации транскрипции. В отличие от этого белок VP16 вириона вируса простого герпеса содержит активирующий участок полипептидной цепи, однако в нем отсутствует ДНК-связывающий домен. Белок VP16 образует специфический комплекс с клеточным ДНК-связывающим белком Oct-1, после чего происходят взаимодействие комплекса с ДНК и активация транскрипции. Таким образом, в этом случае ДНК-связывающий и активирующий домены комплексного фактора транскрипции локализованы в разных полипептидных цепях.

Сравнение структур активирующих доменов различных факторов транскрипции показало, что хотя подобные домены не обладают выраженной гомологией, все они обогащены кислыми аминокислотами. Эти аминокислотные остатки организованы таким образом, что образуют амфипатическую α- спираль, в которой все отрицательно заряженные остатки аминокислот расположены на поверхности спирали. Для подтверждения важной роли данной структуры в активации транскрипции пептид, образующий "кислую" (обогащенную остатками Asp, Glu) амфипатическую α-спираль, генноинженерными методами соединяли с ДНК-связывающим доменом дрожжевого фактора транскрипции GAL4. Такой гибридный белок приобретал способность активировать транскрипцию. Однако этого не происходило, если с ДНКсвязывающим доменом соединяли пептид, образующий неамфипатическую α- спираль, в которой те же самые аминокислотные остатки были расположены случайным образом (рис. I.27). Хотя такие кислые активирующие домены обнаружены у многих активаторов транскрипции разных организмов (от дрожжей до человека), описаны и другие домены, выполняющие аналогичную функцию. Так, активирующий домен фактора Sp1 содержит участок, обогащенный остатками Gln. Однако в соответствующем домене факторов CTF/NF1 преобладают остатки Pro. Такие Pro- и Gln-богатые участки обнаружены и у других факторов транскрипции. Следовательно, данная структура факторов транскрипции не является исключением.

В настоящее время становится все более очевидным, что различные активирующие домены осуществляют стимуляцию транскрипции с участием других белковых факторов, хотя тот же самый эффект может достигаться и

282

путем непосредственного их взаимодействия с РНК-полимеразой II. В частности, действие кислого активирующего домена опосредовано фактором TFIID, связывающим TATA-последовательность промоторных участков ДНК. Например, соединение дрожжевого фактора транскрипции GAL4 и фактора млекопитающих ATF со своими специфическими последовательностями в регулируемых промоторах меняют конформацию уже связанного с этим промотором фактора TFIID таким образом, что последний начинает контактировать не только с самим TATA-боксом, но и с последовательностью нуклеотидов вблизи точки инициации транскрипции. Как было упомянуто выше, такое изменение конформации фактора TFIID необходимо для вхождения в стабильный транскрипционный комплекс других факторов, в частности TFIIC и TFIIE, а также и самой РНК-полимеразы. Следовательно, специфические участки полипептидных цепей факторов транскрипции осуществляют свое активирующее действие и путем изменения конформации других факторов, связанных с промотором, что обеспечивает дальнейшую сборку стабильных транскрипционных комплексов.

Генетический контроль активности факторов транскрипции.

Первичная роль многих факторов транскрипции заключается в активации некоторых групп генов в определенных тканях в ответ на поступление специфических сигналов, например как следствие действия стероидных гормонов. Для достижения данной цели конкретные факторы транскрипции должны быть активны только в строго детерминированных тканях или в ответ на появление соответствующего сигнала. Включение фактора транскрипции в каскад этих реакций может быть достигнуто путем тканеспецифического синтеза соответствующего белка или регулируемой активации белкапредшественника в определенном месте и в заданное время (рис. I.28).

Регуляция на уровне биосинтеза факторов транскрипции. Для многих регуляторных белков биосинтез ограничен клетками строго определенных типов. Например, октамерсвязывающий белок Oct-2, участвующий в активации экспрессии генов иммуноглобулинов в B-лимфоцитах, обнаруживают только в клетках, синтезирующих иммуноглобулины, но не в других клетках, например HeLa. Экспрессия рекомбинантного гена, кодирующего Oct-2, в клетках HeLa приводит к активации экспрессии генов иммуноглобулинов на уровне транскрипции. Таким образом, для осуществления тканеспецифической

283

регуляции экспрессии генов в этом примере необходим тканеспецифический синтез белка-активатора транскрипции (см. рис. I.28,а).

Рис. I.27. Роль структуры типа амфипатической α-спирали в составе

полипептидной цепи рекомбинантного фактора транскрипции GAL4

Транскрипция активируется за счет полипептидного домена, содержащего амфипатическую α-спираль (а), и не активируется, когда в той же самой аминокислотной последовательности отрицательно заряженные боковые группы распределены случайным образом (б)

Во многих случаях регулируемая экспрессия генов факторов транскрипции достигается путем соответствующего управления транскрипцией генов этих факторов. В частности, в клетках HeLa отсутствует не только белок Oct-2, но и его мРНК. Точно так же транскрипция гена фактора C/EBP происходит только в ядрах клеток печени. Очевидно, что такой способ контроля транскрипции у эукариот не решает полностью проблему регуляции экспрессии генов, поскольку предполагает необходимость наличия регуляторных генов, влияющих на транскрипцию генов факторов транскрипции, регулируемая экспрессия которых, в свою очередь, требует новых факторов, и так далее до бесконечности. В этой связи не является неожиданным, что регуляция экспрессии генов многих факторов транскрипции происходит на посттранскрипционном уровне. Например, возрастание уровня биосинтеза

284

дрожжевого фактора GCN4, активирующего гены биосинтеза аминокислот, является следствием ускорения трансляции его мРНК рибосомами в ответ на недостаток внутриклеточного содержания аминокислот.

Рис. I.28. Способы регуляции активности факторов транскрипции у эукариот (аг)

Регуляция экспрессии генов факторов транскрипции может происходить и на уровне сплайсинга соответствующих РНК. В частности, существуют две формы рецептора тиреоидных гормонов, образующиеся в результате альтернативного сплайсинга. У одной из них отсутствует домен, связывающий гормон, и она способна распознавать те же последовательности ДНК, что и

285

гормонсвязывающий рецептор, однако не может активировать транскрипцию в присутствии гормона. Таким образом, эта форма действует как доминантный репрессор соответствующих генов. Подобный механизм описан также и для онкогена v-erbA вируса эритробластоза птиц, кодирующего укороченную форму рецептора тиреоидных гормонов, у которой отсутствует домен, связывающий гормон.

Регуляция активности факторов транскрипции. Белковые продукты генов многих специфически действующих факторов транскрипции часто присутствуют во всех тканях, однако специфический характер их воздействия достигается путем их посттрансляционной активации в строго определенном месте или же в ответ на соответствующий сигнал. Простым примером такого рода является активация дрожжевого фактора транскрипции ACE1, который стимулирует транскрипцию гена металлотионеина в присутствии ионов меди. В этом случае ионы Cu2+, взаимодействуя с фактором, вызывают конформационные изменения в его полипептидной цепи, после чего фактор приобретает способность связываться с регуляторным участком гена металлотионеина и активировать его транскрипцию (см. рис. I.28,б).

Аналогичную зависимость от активирующего лиганда демонстрируют молекулы факторов транскрипции, принадлежащие к семейству рецепторов стероидных/тиреоидных гормонов (см. рис. I.26). Молекулы таких рецепторов для осуществления активирующего действия на гены-мишени должны вначале специфически связать эквимолярные количества соответствующего гормонаэффектора. Как уже упоминалось, эти рецепторы обладают специальным С- концевым доменом, выполняющим данную функцию. Несмотря на то что in vivo такие рецепторы приобретают способность взаимодействовать с регуляторными последовательностями ДНК только в присутствии гормона, in vitro они связываются специфическими последовательностями ДНК как при наличии гормона, так и без него. Оказалось, что в клетках рецепторы находятся в комплексе с белком, предотвращающим их связывание соответствующими регуляторными последовательностями ДНК, и гормоны после взаимодействия с рецепторами в этих комплексах вызывают диссоциацию последних (см.

рис. I.28,в).

Следовательно, в рассмотренном выше случае активация факторов транскрипции происходит не в результате конформационного изменения их

286

пространственной структуры под действием лигандов, а путем лигандзависимого разрушения ингибирующего белок–белкового взаимодействия. Подобный механизм активации продемонстрирован для белкового фактора GAL4 в ответ на действие галактозы, а также белка NFκB под воздействием форболовых эфиров в Т-лимфоцитах или клетках HeLa. Более того, аналогичный механизм обеспечивает активацию транскрипции генов в определенных тканях. Так, фактор транскрипции MyoD1 играет ключевую роль в активации экспрессии генов, происходящей в тканях мышц во время дифференцировки миобластов в мышечные волокна (миотубы). Такая активация наблюдается не из-за увеличения содержания MyoD1 в дифференцирующихся клетках, а как следствие уменьшения содержания белка-ингибитора Id, образующего комплекс с MyoD1 и препятствующего его взаимодействию с регуляторными последовательностями ДНК. Интересно, что ингибитор Id, как и сам MyoD1, содержит мотив "спираль–поворот–спираль", который опосредует димеризацию соответствующих белков. Однако в составе Id-белка отсутствует основный ДНК-связывающий домен, функционирование которого обсуждалось выше. Предполагается, что Id димеризуется с MyoD1, подавляя его способность взаимодействовать с ДНК, по аналогии с тем, как это происходит в опытах с укороченными белками MyoD1, не содержащими ДНКсвязывающий домен.

Активация факторов транскрипции может осуществляться не только путем изменения белок–белковых взаимодействий, но и под действием ковалентных модификаций самих факторов в ответ на появление специфических сигналов (см. рис. I.28,г). Примером может служить механизм активации фактора транскрипции CREB, который обеспечивает активацию некоторых клеточных генов в ответ на воздействие циклическим АМР. О подобных механизмах речь уже шла в разделе о вторичных мессенджерах. В этом случае сАМР стимулирует протеинкиназу А, которая, в свою очередь, фосфорилирует CREB, что сопровождается активацией домена, расположенного в полипептидной цепи фактора по соседству с сайтом фосфорилирования. Тот же механизм функционирует при активации фактора транскрипции генов теплового шока дрожжей в ответ на повышение температуры, а также при активации фактора NKκB под действием форболовых эфиров. В последнем случае фосфорилирование белка-ингибитора,

287

находящегося в комплексе с белком NKκB, приводит к диссоциации комплекса,

что допускает последующее связывание NKκB с регуляторными последовательностями ДНК, сопровождаемое активацией транскрипции соответствующих генов. Фосфорилирование не является единственной модификацией, приводящей к активации факторов транскрипции. Аналогичный эффект достигается и при гликозилировании некоторых белков.

Рис. I.29. Схема регуляции активности фактора транскрипции c-Jun

ПKC – протеинкиназа С, DBD – ДНК-связывающий домен; 12-O- тетрадеканоилфорбол-13-ацетат. Цифрами обозначены номера остатков аминокислот в полипептидной цепи c-Jun, подвергающихся регуляторному фосфорилированию/дефосфорилированию. Заштрихован N-концевой домен, участвующий в активации транскрипции

В заключение рассмотрим несколько подробнее механизм регуляции активности факторов транскрипции класса 1.1 (факторы с доменами типа "лейциновая застежка"), которые, как уже упоминалось, относятся к Bzipбелкам, так как содержат основной домен (B – basic) и домен типа "лейциновая застежка". Данный пример поучителен потому, что приоткрывает завесу над некоторыми молекулярными механизмами канцерогенеза, поскольку многие белковые компоненты этой системы регуляции (Src, Ras, Raf, Jun, Sis, Fos)

288

являются продуктами экспрессии протоонкогенов.

Как уже упоминалось выше, семейство AP-1-подобных факторов транскрипции, предсуществующих в клетках в латентной форме, активируется классическим промотором химического канцерогенеза – 12-О- тетрадеканоилфорбол-13-ацетатом (TPA), а также различными пептидными гормонами, факторами роста, цитокинами и нейромедиаторами. Одновременно происходит индукция транскрипции генов c-fos, уровень экспрессии которых в нестимулированных клетках низок. Латентная форма фактора c-Jun фосфорилирована вблизи C-концевого ДНК-связывающего домена и слабо фосфорилирована в N-концевом активирующем домене. Как следует из упрощенной схемы, представленной на рис. I.29, эта последовательность реакций инициируется после взаимодействия с рецепторами на поверхности клетки соответствующих лигандов – цитокинов или факторов роста. Под действием протеинкиназ Src или PTK гуанозинтрифосфатаза Ras связывает молекулу GTP и переходит в активную конформацию, что позволяет эффекторному участку полипептидной цепи белка взаимодействовать с N- концевым доменом c-Raf. Процесс сопровождается переносом последнего к цитоплазматической мембране, его активацией и запуском каскада реакций, осуществляемых протеинкиназами, активируемыми митогенами (MAP), к которым относятся белки Erk-1 и Erk-2. Активность MAP-киназ зависит от фосфорилирования их полипептидных цепей по остаткам Thr и Ser киназой MAP-киназ (MAPKK), которая сама активизируется в результате фосфорилирования ее полипептидной цепи. Белок c-Raf в этом каскаде реакций выполняет роль такой MAPKK. Активированные Erk-1 и Erk-2 далее транслоцируются в ядро, где инициируют Jun-киназу, которая фосфорилирует фактор транскрипции c-Jun в N-концевом домене. Одновременно с участием протеинкиназы C происходит активация Jun-фосфатазы, которая дефосфорилирует полипептидную цепь c-Jun вблизи ее C-концевого домена. В результате реакций фосфорилирования и дефосфорилирования полипептидной цепи c-Jun этот фактор транскрипции приобретает способность взаимодействовать с регуляторными последовательностями генов, называемых TPA-респонсивными элементами, и далее активирует транскрипцию соответствующих генов.

Рассмотрение механизмов позитивного контроля транскрипции

289

продолжим на примере механизмов функционирования регуляторных последовательностей нуклеотидов высших организмов – энхансеров – специфических регуляторных последовательностей, обеспечивающих высокий уровень транскрипции определенных генов после взаимодействия с регуляторными белками.

Энхансеры. Энхансерами называют определенный класс регуляторных последовательностей нуклеотидов, которые обладают рядом существенных особенностей, резко отличающих их от других регуляторных последовательностей эукариот, регулирующих транскрипцию. Энхансеры представляют собой протяженные последовательности нуклеотидов, которые содержат сайты связывания нескольких факторов транскрипции. Характерными свойствами энхансера являются его способность осуществлять регуляторное действие на промотор на больших расстояниях от него, достигающих 60 т.п.о. и более, независимость его активности от ориентации по отношению к промоторам, а также от расположения относительно регулируемого гена.

Рис. I.30. Варианты взаимного расположения регуляторных и структурных частей генов эукариот

Регуляторные части генов представлены энхансером и промотором, структурные части – экзонами и интронами. а – ген альбумина, энхансер располагается перед промотором; б – ген иммуноглобулина, энхансер расположен в центре гена между последовательностями, кодирующими константную и вариабельную части белка; в – ген β-глобина, энхансер расположен вслед за кодирующей частью гена

290

На рис. I.30 приведены схемы строения нескольких эукариотических генов, которые отражают взаимное расположение их структурных и регуляторных частей. Если у гена альбумина (см. рис. I.30,а) энхансер находится перед промотором, а вся регуляторная часть предшествует его структурной части, то в случае генов иммуноглобулинов регуляторные элементы локализованы в интронах самого гена (см. рис. I.30,б). Энхансер может быть расположен и ниже гена на значительном от него расстоянии, как это имеет место у β-глобинового гена (см. рис. I.30,в).

Рис. I.31. Схема белок-белковых и белково-нуклеиновых взаимодействий на энхансерах непосредственно-ранних генов ВПГ

D – домены димеризации соответствующих факторов,

Отмечены отрицательно заряженные "кислые" участки их полипептидных цепей, непосредственно участвующие в активации транскрипции гена ICP4, направление транскрипции которого обозначено стрелкой

Исследование молекулярных взаимодействий факторов транскрипции с энхансерами привело к пониманию того, что такие регуляторные последовательности являются своеобразными матрицами для сборки сложных белковых комплексов, структура которых обеспечивает высокоспецифические белок-белковые связывания и передачу регуляторных сигналов РНКполимеразе II, находящейся в составе инициационного комплекса. Как и в большинстве других случаев, основной прогресс в изучении молекулярных механизмов регуляции экспрессии генов с помощью энхансеров у эукариот был достигнут с использованием вирусов животных в качестве объектов исследования. У вируса простого герпеса (ВПГ) был обнаружен