Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСН46-83.doc
Скачиваний:
99
Добавлен:
29.03.2015
Размер:
4.66 Mб
Скачать

Расчет теплоизоляционных слоев дорожной конструкции

4.29. Для определения толщины теплоизоляционных и конструктивных теплоизоляционных слоев необходим теплотехнический расчет дорожной одежды и земляного полотна. Рассчитывают конструкцию применительно к модели дорожной одежды и земляного полотна, представляющей собой трехслойное полупространство, состоящее из материалов (слоев) с различными теплофизическими свойствами. Средний слой, материал которого характеризуется более эффективными по сравнению с другими слоями теплозащитными свойствами, называется теплоизоляционным.

При многослойной конструкции слои, находящиеся над теплоизоляционным слоем, следует приводить к эквивалентному по теплофизическим характеристикам однородному слою, а слои, лежащие под теплоизоляцией, включая земляное полотно, - к эквивалентному однородному полупространству (см. п. 4.36).

4.30. Расчет теплоизоляционного слоя сводится к удовлетворению условия:

А(h+d)£[А(h+d)], (4.5)

где А(h+d) - ожидаемая амплитуда колебания температуры поверхности земляного полотна (низа теплоизоляции), °С;

[А(h+d)] - то же, допускаемое, °С..

4.31. Допускаемое значение амплитуды годового колебания температуры поверхности земляного полотна

[А(h+d)] =tп.ср+ [t], (4.6)

где tп.ср- среднегодовая температура поверхности покрытия в наиболее неблагоприятный год в районах, где преобладают положительные температуры, за период между капитальными ремонтами, °С (приложение 10);

[t] - допускаемая самая низкая отрицательная температура поверхности земляного полотна в расчетный год с учетом температуры замерзания грунта, °С.

Под наиболее неблагоприятным годом понимают год с максимальной суммой отрицательных температур поверхности покрытия за период между капитальными ремонтами дорожной одежды.

4.32 Допускаемая отрицательная температура поверхности земляного полотна

[t] = /c/ + /tзам/ приt1=f([it]:tпр.с), (4,7)

где t1- находят по графику (рис. 4.5);

tзам- температура замерзания грунта, принимаемая для песков - минус 0,3°С, супесей - минус 0,6°С, суглинков - минус 1,0°С и для глин - минус 1,5°С.

При расчете теплоизоляционного слоя, предназначенного для полного предотвращения промерзания земляного полотна, принимают t1= 0°C.

4.33. Чтобы воспользоваться графиком (см. рис. 4.5), необходимо предварительно определить допускаемое значение произведения средневзвешенной отрицательной температурыtповерхности земляного полотна и продолжительностиtего промерзания, используя равенство:

[tt]=, (4.8)

где [z] - допускаемая глубина промерзания земляного полотна от низа теплоизоляционного слоя, м;

r- удельная теплота перехода воды в лед, принимаемая равной 335 000 Дж/кг;

Wт- влажность грунта при пределе текучести, доли единицы;

Wн- содержание незамерзшей воды, доли единицы;

gм- плотность скелета мерзлого грунта, кг/м3;

lм- коэффициент теплопроводности мерзлого грунта, Вт/(м×К).

4.34. Допускаемая глубина промерзания земляного полотна

[z] =lдоппуч, (4.9)

где lдоп- допускаемое пучение (см. п. 4.18);

Кпуч- коэффициент пучения грунта 3-го типа местности по условиям увлажнения (см. п. 4.22иприложение 6), доли единицы.

Значения lдопмогут быть приняты меньшими по сравнению с указаннымив п. 4.18, если при этом ровность поверхности покрытия обеспечит высокую экономическую эффективность работы транспортных средств, обращающихся по дороге. Но, поскольку снижение величиныlдопприводит, естественно, к удорожанию дорожной одежды, оптимальное значениеlдопдолжно быть определено на основании технико-экономического сравнения вариантов.

4.35 Левую частьнеравенств (4.5)определяют по номограммам, связывающим следующие комплексы параметров:

; ; ; ; ; ; Ап= 0,5(tпmax-tпmin),

где h- толщина слоя, находящегося над теплоизоляцией, т. е. общая толщина слоев над теплоизоляцией при многослойной конструкции, м;

d- толщина теплоизоляционного слоя, м;

Aп- амплитуда годового колебания температуры поверхности покрытия,°С (см. приложение 10);

w- частота колебаний температуры, с-1;

а1, а2- коэффициенты температуропроводности материала, находящегося над теплоизоляцией и теплоизоляционного материала [a=l/(сg)], м2/с;

сi- удельная теплоемкость материала Дж/(кг×К).

Рис. 4.5. График зависимости температур t1/tп.срот [tt]/tп.срдля определения допускаемой суммы отрицательных температур за зиму на поверхности земляного полотна под теплоизоляцией

Рис. 4.6. Номограмма для расчета теплоизоляционных слоев дорожной конструкции при s1/s3= 0,8 иN=A(h+d)/Aппри

При расчете теплоизоляционного слоя используют номограммы (рис. 4.6,4.7). Предварительно вычисляют отношениеA(h+d)/Aп, затем на нижней оси номограммы (см. рис. 4.6) находят точку, соответствующую величинеA(h+d)/Aп= [A(h+d)]/Aп. Из этой точки ведут вертикаль до пересечения с лучом , откуда проводят горизонтальную пряную до кривой с заданным значениемs1/s2.Из точки пересечения горизонтали с кривойs1/s2опускают перпендикуляр на верхнюю ось абсцисс, отсекающий на ней отрезок . Зная величины а2иw= 2×10-7 с-1, нетрудно вычислить толщину теплоизоляционного слояd.

При расчете конструкций, для которых отношение . s1/s2=sотличаемся от 0,8, наряду с номограммой (см рис. 4.6) используют другую номограмму (см рис. 4.7). В этом случае по предварительно полученной приs1/s3= 0,8 (см рис. 4.6) величине и фактическому значениюs1/s3находят (см рис. 4.7) значение , а затем и величинуds.

Искомая толщина теплоизолирующего слоя

d= Ктds, (4.10)

где Кт= 0,8 - коэффициент, учитывающий влияние теплового потока от грунтовых вод на промерзание конструкций.

Пользуясь номограммами (см. рис. 4.6,4.7), можно определить любой другой комплекс показателей. В частности, можно найти ожидаемую амплитуду колебания температуры на нижней границе теплоизоляционного слояA(h+d) при известных значениях остальных показателей, связанны; между собой номограммами.

4.36. При расчете теплоизоляционного слоя, укладываемого в многослойную дорожную конструкцию, се приводят к трехслойной модели следующим образом.

Слои, лежащие над теплоизоляцией, заменяют одним слоем, эквивалентным им по термическому сопротивлению и имеющим толщину h, равную сумме толщин этих слоев . Коэффициент теплопроводности такого эквивалентного слоя

lэ, (4.11)

где u- число слоев над теплоизоляцией, приводимых к эквивалентному;

i- номер слоя.

Плотность gэи удельную теплоемкость сээквивалентного слоя определяют соответственно:

gэ, (4.12)

сэ, (4.13)

Слои, находящиеся под теплоизоляцией, объединяют с грунтом земляного полотна в одно эквивалентное полупространство.

Поскольку коэффициенты теплоусвоения siобычных дорожно-строительных слабосвязных материалов (пески, гравийные материалы и др.) существенно не различаются, значения теплофизических характеристик при определении амплитуды колебания температуры на нижней границе теплоизоляции принимают для эквивалентного полупространства такими же, как и для грунта. Значения температуры замерзания,Wт,Wн(см. п. 4.33) иgi(см. п. 4.35) применительно к эквивалентному полупространству также принимают равными соответствующим значениям этих параметров для грунта.

4.37. Допустимая глубина промерзания эквивалентного полупространства

[z] =Shст+lдоппуч, (4.14)

где Shст- общая толщина слоев из стабильных материалов, находящихся между нижней границей теплоизоляции и поверхностью земляною полотна.

Рис. 4.7. Номограмма для определения толщины теплоизоляционного слоя

Таблица 4.3

Покрытие

lдр, см

Уклон iдоп, %о, для категории дороги

I

II

III

Монолитный цементобетон

2

0,5

1,0

1,0-2,0

Горячий асфальтобетон марок I-II

4

2,0

2,5

3,0

Горячий асфальтобетон марки III

6

-

4,0

5,0

Примечание. Уклон равный 1 %о соответствует неравномерному пучению 1 мм/м.

4.38. В соответствии с п. 4.4следует проверитьпо формуле (4.1)условия обеспечения морозоустойчивости конструкции, содержащей теплоизоляционный слой. При этом глубинуzпромерзания от поверхности покрытия и общую приведенную толщинуz1,э слоев из стабильных материалов, включая толщину теплоизоляции, принимают:

z = Shiei + deи + [z]; z1,э = Shei + deи; (4.15)

приaз.п= [z]2/(2t), (4.16)

t, (4.17)

где ei,eи- эквиваленты соответственно по теплотехническим свойствам материалов слоев (см. приложение 9, табл. 32), находящихся над теплозащитой, и теплоизоляционного материала по отношению к уплотненному щебню;

aз.п- показатель, зависящий от скорости и глубины промерзания земляного полотна, который определяютпо формуле (4.16);

t- продолжительность промерзания земляного полотна в часах, определяемаяпо формуле (4.17).

Величину [А(h+d)] находятпо формуле (4.6).

4.39. При проектировании сопряжения смежных участков, на концах которых ожидается разное пучение, длину L(в метрах) переходной клиновидной конструкции из стабильного или теплоизоляционного материала следует определять по формуле:

L= 10lдр/lдоп, (4.18)

где lдр- допустимая разность пучения на концах сопрягаемых участков (табл. 4.3), см;

lдоп- допускаемый продольный уклон поверхности покрытия переходного участка, образующийся в результате зимнего пучения (см. табл. 4.3), %о.

4.40. Толщину теплоизоляционного или морозозащитного слоя на концах переходного участка следует назначать с таким расчетом, чтобы пучение здесь не превосходило ожидаемого поднятия покрытия (на сопрягаемых участках) и не было больше допустимого.