Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
для студентов Радов / Нормативные_документы / Реком по колейности / Рекомендации по выявлению и странению колеи на нежестких дорожных одеждах Ч3.rtf
Скачиваний:
44
Добавлен:
29.03.2015
Размер:
21.19 Mб
Скачать

8.4. Основные структурно-реологические свойства асфальтобетона при сдвиге

8.4.1. Расчет исходит из того, что асфальтобетон является сложным реологическим телом, вязкоупругие и вязкопластичные свойства которого зависят в сильной степени от температурно-временных условий деформирования.

При деформировании асфальтобетона в условиях сдвига необходимо определять статический (Шведовский) предел текучести, так как необратимое деформирование асфальтобетона при сдвиге наблюдается только при таких касательных напряжениях, которые превышают статический предел текучести.

При плоскопараллельном сдвиге противоположных плоскостей образца со скоростью V (относительная скорость необратимой деформации (градиент скорости сдвига) определяется по следующей зависимости:

, (8.8)

ãäå - высота образца.

Рис.8.1. Схема деформирования асфальтобетона при сдвиге

8.4.2. Сопротивление асфальтобетона сдвигу в соответствии с уравнением Кулона представляется в виде суммы составляющих:

статического предела текучести и сцепления.

, (8.9)

ãäå - предельное напряжение сдвига;

- нормальное напряжение на площадке сдвига;

- коэффициент внутреннего трения асфальтобетона;

- сцепление при расчетных условиях испытания, зависящее от времени действия нагрузки или скорости деформирования и температуры асфальтобетона, MПа.

8.4.3. Кинетику деформирования асфальтобетона от действия сдвигающих напряжений наиболее полно описывает реологическая модель (рис.8.2), которая принимается за основу при оценке деформаций асфальтобетонного покрытия.

Рис.8.2. Реологическая модель деформирования асфальтобетона при сдвиге

В соответствии с принятой моделью деформации в элементе Гука (I) и элементе Кельвина (II) являются обратимыми, т.е. не влияют на величину остаточной деформации, характеризующей глубину колеи покрытия. Поэтому при испытании асфальтобетона необходимо упруго-эластическую обратимую деформацию выделять из общей деформации ползучести.

Наличие в реологической модели элемента вязкопластичности (III), состоящего из параллельно соединенных элементов: вязкого плунжера и элемента Сен-Венана - Кулона, указывает на то, что необратимые деформации возможны только при таких сдвигающих напряжениях, которые превышают статический предел текучести, определяемый по Кулону как произведение нормального напряжения на коэффициент внутреннего трения.

8.4.4. Скорость течения, характеризующая скорость накопления остаточной деформации, связана степенной зависимостью с величиной действующих напряжений. Поэтому пластическая вязкость является неньютоновской, эффективной, т.е. зависящей от скорости необратимой деформации, что отмечается стрелкой на плунжере (рис.8.3). Пластическая вязкость асфальтобетона выражается следующей зависимостью:

. (8.10)

Рис.8.3. Схема влияния состава и структуры асфальтобетона на сдвигоустойчивость покрытия

8.4.5. К важным структурным характеристикам асфальтобетона, определяющим сдвигоустойчивость покрытия, относятся также параметры, характеризующие зависимости показателей вязкости и когезионного сцепления от скорости деформирования и температуры. Зависимость деформативно-прочностных свойств асфальтобетона от скорости деформирования принято характеризовать коэффициентом пластичности по Н.Н.Иванову, а от температуры - коэффициентом теплостойкости или энергией активации по Г.М.Бартеневу.

8.4.6. Целенаправленное изменение структурно-реологических свойств асфальтобетона при сдвиге является основным способом борьбы с колееобразованием дорожного покрытия (рис.8.3).