
- •ПРЕДИСЛОВИЕ
- •ВВЕДЕНИЕ
- •ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНЖЕНЕРНОЙ ГРАФИКИ
- •Элберт Хаббард
- •ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ
- •ГЛАВА 1
- •ОСНОВНЫЕ ПОНЯТИЯ В ТЕОРИИ ИЗОБРАЖЕНИЯ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ
- •1. ЧТО ТАКОЕ НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ?
- •2. ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ – ИНСТРУМЕНТ ПОЗНАНИЯ ДЕЙСТВИТЕЛЬНОСТИ
- •4. ПРОЕКЦИОННОЕ ОТОБРАЖЕНИЕ – АНАЛОГ ПОНЯТИЯ ФУНКЦИИ
- •Свойства центрального проецирования
- •Свойства параллельного проецирования
- •5. МЕТОД ДВУХ ИЗОБРАЖЕНИЙ
- •6. МОДЕЛЬ ТОЧКИ В ОРТОГОНАЛЬНЫХ ПРОЕКЦИЯХ
- •ВЫВОДЫ
- •ПРЯМАЯ ЛИНИЯ И ПЛОСКОСТЬ
- •1. ПОЛОЖЕНИЕ ПРЯМОЙ В ПРОСТРАНСТВЕ
- •3. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ
- •4. ПОЛОЖЕНИЕ ПЛОСКОСТИ В ПРОСТРАНСТВЕ
- •5. РАСПОЛОЖЕНИЕ ПЛОСКОСТИ ОТНОСИТЕЛЬНО ОСНОВНЫХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ
- •Проецирующая плоскость
- •Плоскость уровня
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Задача № 1
- •Порядок выполнения
- •Задача № 2
- •Порядок выполнения
- •Задача № 3
- •Порядок выполнения
- •Задача № 4
- •Порядок выполнения
- •Задача № 5
- •Порядок выполнения
- •ГЛАВА 3
- •СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ
- •1. ПРИНАДЛЕЖНОСТЬ ПРЯМОЙ ЛИНИИ ПЛОСКОСТИ
- •1.1. ПРЯМАЯ ОБЩЕГО ПОЛОЖЕНИЯ В ПЛОСКОСТИ
- •1.2. ГЛАВНЫЕ ЛИНИИ ПЛОСКОСТИ
- •Линии уровня
- •Линии наибольшего наклона плоскости
- •2. СПОСОБЫ ПРЕОБРАЗОВАНИЯ ПРОЕКЦИЙ
- •2.1. ПЛОСКОПАРАЛЛЕЛЬНОЕ ПЕРЕМЕЩЕНИЕ
- •2.2. ВРАЩЕНИЕ ВОКРУГ ОСЕЙ, ПЕРПЕНДИКУЛЯРНЫХ ПЛОСКОСТЯМ ПРОЕКЦИЙ
- •2.3. ВРАЩЕНИЕ ВОКРУГ ОСЕЙ, ПАРАЛЛЕЛЬНЫХ ПЛОСКОСТЯМ ПРОЕКЦИЙ
- •2.4. ВРАЩЕНИЕ ВОКРУГ ОСЕЙ, ЛЕЖАЩИХ В ПЛОСКОСТЯХ ПРОЕКЦИЙ (СОВМЕЩЕНИЕ С ПЛОСКОСТЯМИ ПРОЕКЦИЙ)
- •2.5. ЗАМЕНА ПЛОСКОСТЕЙ ПРОЕКЦИЙ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •ГЛАВА 4
- •ОБОБЩЕННЫЕ ПОЗИЦИОННЫЕ ЗАДАЧИ
- •1.1. ПРЯМАЯ ЛИНИЯ, ПАРАЛЛЕЛЬНАЯ ПЛОСКОСТИ
- •1.2. ПРЯМАЯ ЛИНИЯ, ПЕРЕСЕКАЮЩАЯ ПЛОСКОСТЬ (ОБЩИЙ СЛУЧАЙ)
- •1.3. ПРЯМАЯ ЛИНИЯ, ПЕРПЕНДИКУЛЯРНАЯ ПЛОСКОСТИ
- •2. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ
- •2.1. ПЛОСКОСТИ ПАРАЛЛЕЛЬНЫЕ
- •2.2. ПЛОСКОСТИ ПЕРЕСЕКАЮЩИЕСЯ (ОБЩИЙ СЛУЧАЙ)
- •2.3. ПЛОСКОСТИ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫЕ
- •3. ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ
- •4. ОБОБЩЕННЫЕ ПОЗИЦИОННЫЕ ЗАДАЧИ
- •4.1. ПЕРЕСЕЧЕНИЕ КРИВОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ
- •4.2. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
- •4.3. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Задача № 1
- •Порядок выполнения
- •Задача № 2
- •Порядок выполнения
- •Задача № 3
- •Порядок выполнения
- •Задача № 4
- •Порядок выполнения
- •Задача № 5
- •Порядок выполнения
- •ГЛАВА 5
- •1. ОБ АНАЛОГИИ МЕЖДУ ПОНЯТИЯМИ «ФУНКЦИЯ» И «ОТОБРАЖЕНИЕ»
- •2. ПЕРСПЕКТИВНАЯ КОЛЛИНЕАЦИЯ
- •Теорема Дезарга
- •Гомология
- •3. ПЕРСПЕКТИВНО-АФФИННОЕ (РОДСТВЕННОЕ) СООТВЕТСТВИЕ
- •4. СРАВНЕНИЕ ДВУХ ГОМОЛОГИЙ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Порядок выполнения
- •ГЛАВА 6
- •ПРОЕКЦИОННЫЕ МОДЕЛИ ТРЕХМЕРНЫХ ОБЪЕКТОВ
- •1. ВНЕШНЯЯ ФОРМА ПРЕДМЕТОВ И НЕОБХОДИМОСТЬ ВЫЯВЛЕНИЯ ИХ ВНУТРЕННИХ КОНТУРОВ
- •2. СИСТЕМЫ РАСПОЛОЖЕНИЯ ИЗОБРАЖЕНИЙ
- •3. ВИДЫ
- •3.1. ОСНОВНЫЕ ВИДЫ
- •3.2. ДОПОЛНИТЕЛЬНЫЕ ВИДЫ
- •3.3. МЕСТНЫЕ ВИДЫ
- •4. РАЗРЕЗЫ
- •4.1. ВИДЫ РАЗРЕЗОВ
- •4.2. ОБОЗНАЧЕНИЕ РАЗРЕЗОВ
- •5. СЕЧЕНИЯ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Задача № 1
- •Порядок выполнения
- •Задача № 2
- •Порядок выполнения
- •КРИВЫЕ ЛИНИИ
- •1. СПОСОБЫ ОБРАЗОВАНИЯ КРИВЫХ ЛИНИЙ
- •2. КЛАССИФИКАЦИЯ КРИВЫХ ЛИНИЙ
- •3. СПОСОБЫ ЗАДАНИЯ КРИВЫХ ЛИНИЙ
- •4. КАСАТЕЛЬНАЯ И НОРМАЛЬ К КРИВОЙ ЛИНИИ
- •5. УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ
- •6. ВЕКТОР-ФУНКЦИЯ
- •7. КРИВИЗНА КРИВОЙ
- •8. КРУГ КРИВИЗНЫ
- •9. ЭВОЛЮТА И ЭВОЛЬВЕНТА
- •10. КРИВИЗНА ОКРУЖНОСТИ
- •11. КРИВЫЕ ЛИНИИ ВТОРОГО ПОРЯДКА
- •11.1. ЭЛЛИПС
- •11.2. ПАРАБОЛА
- •11.3. ГИПЕРБОЛА
- •12. КОНИЧЕСКИЕ СЕЧЕНИЯ
- •13. ПРОЕКЦИИ КРИВЫХ ЛИНИЙ
- •14. ЭЛЛИПС – ФИГУРА, РОДСТВЕННАЯ ОКРУЖНОСТИ
- •15. ОКРУЖНОСТЬ В ПЛОСКОСТИ ОБЩЕГО ПОЛОЖЕНИЯ
- •15.2. ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ МАЛОЙ ОСИ ЭЛЛИПСА МЕТОДОМ ЗАМЕНЫ ПЛОСКОСТЕЙ ПРОЕКЦИЙ
- •15.3. ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ МАЛОЙ ОСИ ЭЛЛИПСА С ПРИМЕНЕНИЕМ ЛИНИИ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Порядок выполнения
- •ГЛАВА 8
- •КРИВЫЕ ЛИНИИ, ИМЕЮЩИЕ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ.
- •ОБВОДЫ ПРИ ПРОЕКТИРОВАНИИ ПОВЕРХНОСТЕЙ
- •1. НЕКОТОРЫЕ ПЛОСКИЕ КРИВЫЕ, ИМЕЮЩИЕ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ
- •1.1. ЦИКЛИЧЕСКИЕ КРИВЫЕ
- •Циклоида
- •Эпициклоиды
- •Гипоциклоиды
- •1.2. СПИРАЛИ
- •1.3. ПОДЕРЫ
- •2.ПЛОСКИЕ СОСТАВНЫЕ КРИВЫЕ ЛИНИИ (ОБВОДЫ) ПРИ ПРОЕКТИРОВАНИИ ПОВЕРХНОСТЕЙ
- •2.1. АППРОКСИМАЦИЯ ТОЧЕЧНЫХ МАССИВОВ
- •2.3. ХАРАКТЕРНЫЕ ТОЧКИ КРИВЫХ
- •2.4. ПОРЯДОК ГЛАДКОСТИ ОБВОДОВ
- •2.5. ОСНОВНЫЕ СПОСОБЫ ПОСТРОЕНИЯ ОБВОДОВ
- •2.5.1. ИНТЕРПОЛЯЦИЯ ДУГАМИ ОКРУЖНОСТЕЙ
- •2.5.2. ИНТЕРПОЛЯЦИЯ КРИВЫМИ ВТОРОГО ПОРЯДКА
- •2.5.3. ИНТЕРПОЛЯЦИЯ ОБВОДОВ СПЛАЙН-ФУНКЦИЯМИ
- •ВЫВОДЫ
- •ГЛАВА 9
- •МНОГОГРАННЫЕ ПОВЕРХНОСТИ И МНОГОГРАННИКИ.
- •СИСТЕМАТИЗАЦИЯ ПОВЕРХНОСТЕЙ
- •1. МНОГОГРАННЫЕ ПОВЕРХНОСТИ
- •2. НЕКОТОРЫЕ ВИДЫ МНОГОГРАННИКОВ
- •3. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКА ПЛОСКОСТЬЮ
- •5. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ
- •6. РАЗВЕРТКИ МНОГОГРАННИКОВ
- •6.1. СПОСОБ НОРМАЛЬНОГО СЕЧЕНИЯ
- •6.2. СПОСОБ РАСКАТКИ
- •6.3. СПОСОБ ТРЕУГОЛЬНИКОВ (ТРИАНГУЛЯЦИИ)
- •7. СИСТЕМАТИЗАЦИЯ ПОВЕРХНОСТЕЙ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Порядок выполнения
- •СЛОЖНЫЕ ПОВЕРХНОСТИ
- •1. ОПРЕДЕЛЕНИЕ ПОВЕРХНОСТИ
- •2. СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ
- •2.1. ОБРАЗОВАНИЕ ПОВЕРХНОСТЕЙ ПРИ ПОМОЩИ ДВИЖУЩЕЙСЯ ЛИНИИ
- •2.2. ОБРАЗОВАНИЕ ПОВЕРХНОСТЕЙ ПРИ ПОМОЩИ ДВИЖУЩЕЙСЯ ПОВЕРХНОСТИ
- •3. СПОСОБЫ ЗАДАНИЯ ПОВЕРХНОСТЕЙ
- •3.1. ГРАФИЧЕСКИЙ СПОСОБ ЗАДАНИЯ КИНЕМАТИЧЕСКИХ ПОВЕРХНОСТЕЙ
- •3.2. АНАЛИТИЧЕСКИЙ СПОСОБ ЗАДАНИЯ ПОВЕРХНОСТЕЙ
- •3.3. ПРИМЕР АНАЛИТИЧЕСКОГО СПОСОБА ЗАДАНИЯ ПОВЕРХНОСТИ
- •4. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ
- •4.1. ТРЕХГРАННИК ФРЕНЕ
- •4.2. ЕСТЕСТВЕННЫЕ КООРДИНАТЫ ПРОСТРАНСТВЕННОЙ КРИВОЙ
- •5. КРИВЫЕ ЛИНИИ НА СФЕРЕ
- •6. КАСАТЕЛЬНЫЕ И НОРМАЛИ К ПОВЕРХНОСТИ ПРИ ОБРАБОТКЕ ЕЕ НА СТАНКАХ С ЧПУ
- •7.2. КАРКАСНО-КИНЕМАТИЧЕСКИЙ МЕТОД ПРОЕКТИРОВАНИЯ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Порядок выполнения
- •ПОВЕРХНОСТИ ВРАЩЕНИЯ И ВИНТОВЫЕ
- •1. ПОВЕРХНОСТИ ВРАЩЕНИЯ
- •3. ПРИМЕРЫ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ
- •3.1. СФЕРА
- •3.2. ЦИЛИНДР ВРАЩЕНИЯ
- •3.3. КОНУС ВРАЩЕНИЯ
- •3.4. ГИПЕРБОЛОИД ВРАЩЕНИЯ
- •4. ВИНТОВЫЕ ПОВЕРХНОСТИ
- •4.1. ПРЯМОЙ ГЕЛИКОИД
- •4.2. ДРУГИЕ ВИДЫ ВИНТОВЫХ ПОВЕРХНОСТЕЙ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Порядок выполнения
- •ЛИНЕЙЧАТЫЕ ПОВЕРХНОСТИ
- •1. СПОСОБ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ ДВИЖЕНИЕМ ПРЯМОЙ ЛИНИИ
- •2.1. КОНИЧЕСКИЕ ПОВЕРХНОСТИ
- •2.2. ЦИЛИНДРИЧЕСКИЕ ПОВЕРХНОСТИ
- •3. ЛИНЕЙЧАТЫЕ ПОВЕРХНОСТИ
- •3.1. ЦИЛИНДРОИД
- •3.2. КОНОИД
- •3.3. ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД (КОСАЯ ПЛОСКОСТЬ)
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Порядок выполнения
- •ГЛАВА 13
- •РАЗВЕРТКИ ПОВЕРХНОСТЕЙ
- •1. ПЛОСКОСТЬ, КАСАТЕЛЬНАЯ К ПОВЕРХНОСТИ
- •1.1. ОСНОВНЫЕ ПОНЯТИЯ
- •1.2. ПОСТРОЕНИЕ КАСАТЕЛЬНОЙ ПЛОСКОСТИ
- •2. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ
- •2.1. ПОРЯДОК ПОСТРОЕНИЯ РАЗВЕРТОК В ОБЩЕМ СЛУЧАЕ
- •2.2. ОСНОВНЫЕ СВОЙСТВА РАЗВЕРТЫВАЮЩИХСЯ ПОВЕРХНОСТЕЙ
- •2.3. ПРИМЕРЫ РАЗВЕРТЫВАНИЯ КРИВЫХ ПОВЕРХНОСТЕЙ
- •Прямой круговой цилиндр
- •Наклонный цилиндр
- •Конус
- •2.4. РАЗВЕРТКИ НЕРАЗВЕРТЫВАЮЩИХСЯ ПОВЕРХНОСТЕЙ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Задача № 1
- •Порядок выполнения
- •Задача № 2
- •Порядок выполнения
- •Задача № 3
- •Порядок выполнения
- •Создание конуса с вырезом
- •Создание развертки
- •Задача № 4
- •Порядок выполнения
- •АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •1. ОСНОВНЫЕ ПОНЯТИЯ
- •2. СУТЬ СПОСОБА ПОЛУЧЕНИЯ АКСОНОМЕТРИЧЕСКИХ ПРОЕКЦИЙ
- •5. СТАНДАРТНЫЕ ВИДЫ АКСОНОМЕТРИЧЕСКИХ ПРОЕКЦИЙ
- •5.1. ПРЯМОУГОЛЬНАЯ ИЗОМЕТРИЯ
- •5.1.1. ОКРУЖНОСТЬ В ПРЯМОУГОЛЬНОЙ ИЗОМЕТРИИ
- •5.2. ПРЯМОУГОЛЬНАЯ ДИМЕТРИЯ
- •6. КОСОУГОЛЬНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •6.1. ФРОНТАЛЬНАЯ ИЗОМЕТРИЧЕСКАЯ ПРОЕКЦИЯ
- •6.2. ГОРИЗОНТАЛЬНАЯ ИЗОМЕТРИЧЕСКАЯ ПРОЕКЦИЯ
- •6.3. ФРОНТАЛЬНАЯ ДИМЕТРИЧЕСКАЯ ПРОЕКЦИЯ
- •ВЫВОДЫ
- •ГЛАВА 15
- •1. ПАРАМЕТРИЗАЦИЯ МАКРОГЕОМЕТРИИ ПОВЕРХНОСТЕЙ ТЕХНИЧЕСКИХ ИЗДЕЛИЙ
- •1.3. ЗАДАНИЕ РАЗМЕРОВ
- •1.3.1. БАЗИРОВАНИЕ И БАЗЫ
- •1.3.2. КОЛИЧЕСТВО РАЗМЕРОВ ДЛЯ ПОЛНОГО ОПРЕДЕЛЕНИЯ ФОРМЫ ДЕТАЛЕЙ
- •1.3.3. РАЗМЕРЫ ФОРМЫ И РАЗМЕРЫ ПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ
- •1.3.4. КОНСТРУКТИВНАЯ НЕОПРЕДЕЛЕННОСТЬ БАЗ
- •1.4. НАНЕСЕНИЕ РАЗМЕРОВ
- •1.5. ОСЕВЫЕ И ЦЕНТРОВЫЕ ЛИНИИ
- •2. ПАРАМЕТРИЗАЦИЯ МИКРОГЕОМЕТРИИ ПОВЕРХНОСТЕЙ ТЕХНИЧЕСКИХ ИЗДЕЛИЙ
- •ВЫВОДЫ
- •УПРАЖНЕНИЕ
- •Задача № 1
- •Задача № 2
- •Порядок выполнения
- •ЗАКЛЮЧЕНИЕ
- •БИБЛИОГРАФИЧЕСКИЙ СПИСОК
- •ОГЛАВЛЕНИЕ

Г л а в а 2. Прямая линия и плоскость |
37 |
Рис. 18
Определите самостоятельно угол наклона троса АВ к вертикальной стене в приведенной выше задаче.
3. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ
Различают три варианта взаимного положения двух прямых: пересекающиеся, параллельные и скрещивающиеся.
Пересекающиеся прямые
Пересекающиеся прямые имеют одну общую точку (рис. 19, а). На эпюре точки пересечения одноименных проекций находятся на одном перпендикуляре к соответствующей оси проекций. Пересекающиеся прямые лежат в одной плоскости.
Если прямые линии пересекаются под произвольным углом и не параллельны плоскости проекций, то плоский угол между ними проецируется на плоскость проекций с искажением.
Если прямые линии пересекаются под произвольным углом и параллельны плоскости проекций, то плоский угол между ними проецируется на плоскость проекций без искажения.

38 |
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНЖЕНЕРНОЙ ГРАФИКИ |
а |
б |
в |
Рис. 19
Прямой угол между двумя пересекающимися прямыми проецируется на плоскость без искажения, если хотя бы одна сторона этого угла параллельна плоскости проекций. На рис. 19, б у прямого угла ABC сторона AB параллельна
горизонтальной плоскости проекций, в результате чего на эту плоскость угол проецируется без искажения. На рис. 19, в прямой угол ABC проецируется на фронтальную плоскость проекций без искажения, так как одна его сторона (BС) параллельна плоскости проекций.
Параллельные прямые
Параллельные прямые лежат в одной плоскости и пересекаются в несобственной точке. Признаком параллельности прямых является параллельность их одноименных проекций на всех плоскостях проекций. Для задания параллельных прямых общего положения достаточно двух проекций (рис. 20, а), но если эти прямые являются прямыми частного положения, то становится необходимым построение третьей проекции. Такое построение показано на рис. 20, б для двух профильных прямых. Видно, что, несмотря на параллельность двух проекций, прямые не являются параллельными.
Скрещивающиеся прямые
Скрещивающиеся прямые не параллельны и не пересекаются между собой. Они не лежат в одной плоскости, поэтому на эпюре точки пересечения их од-

Г л а в а 2. Прямая линия и плоскость |
39 |
ноименных проекций не лежат на одном перпендикуляре к соответствующей оси проекций, так как это проекции разных точек (рис. 21).
а |
б |
Рис. 20
Рис. 21
К дачному домику (рис. 22) электрик провел электрические провода, один из которых натянут между местами крепления в точках В и С, а другой – между А и D. Допустим, что есть необходимость убедиться в безопасности их взаимного расположения. Тогда для исключения возможного касания проводов надо определить минимальное расстояние между ними.

40 |
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНЖЕНЕРНОЙ ГРАФИКИ |
Рис. 22
Натянутые провода в данном случае являются скрещивающимися прямыми (если не учитывать их провисание), и определение минимального расстояния между ними решается методами начертательной геометрии.