Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Документ Microsoft Office Word (2)

.docx
Скачиваний:
20
Добавлен:
26.03.2015
Размер:
209.54 Кб
Скачать

Колебания – процессы (изменения состояния), обладающие той или иной повторяемостью во времени.

Механические колебания – движения, которые точно или приблизительно повторяются во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени. (В противном случае колебания наз. апериодическими).

Для возникновения колебания тело необходимо вывести из положения равновесия, сообщив либо кинетическую энергию (удар, толчок), либо – потенциальную (отклонение тела).

Примеры колебательных систем:

1. Нить, груз, Земля.

2. Пружина, груз.

3. Жидкость в U-образной трубке, Земля.

4. Струна.

Свободные колебания — это колебания, которые возникают в системе под действием внутренних сил, после того как система была выведена из положения устойчивого равновесия. В реальной жизни все свободные колебания являются затухающими (т.е. их амплитуда, размах, уменьшается с течением времени).

Вынужденные колебания – колебания, которые происходят под действием внешней периодической силы.

Характеристики колебательного процесса.

1. Смещение х - отклонение колеблющейся точки от положе­ния равновесия в данный момент времени (м).

2. Амплитуда хм - наиболь­шее смещение от положения рав­новесия (м). Если колебания незатухающие, то амплитуда постоянна.

 

3. Период Т — время, за которое совершается одно полное колебание. Выражается в секундах (с).

За время, равное одному периоду (одно полное колебание) тело совершает перемещение, равное __       и проходит путь, равный ____ .

 

 

4. Частота   — число полных колеба­ний за единицу времени. В СИ измеряется в герцах (Гц).

Частота колебаний равна одному герцу, если за 1 секунду совершается 1 полное колебание. 1 Гц= 1 с-1.

 

 

5. Циклической (круговой) частотой  периодических колебаний наз. число полных колебаний, которые совершаются за 2 единиц времени (секунд). Единица измерения – с-1.

 

 

6. Фаза колебания -  - физическая величина, определяющая смещение x в данный момент времени. Измеряется в радианах (рад).

Фаза колебания в начальный момент времени (t=0) называется начальной фазой (0).

 

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз.гармоническими колебаниями.

Например, в случае механических гармонических колебаний:.

В этих формулах ω – частота колебания, xm – амплитуда колебания, φ0 и φ0’ – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ0’ = φ+/2 полностью совпадают.

 

 

 

Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0  смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ0’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=хm, следовательно, удобнее пользоваться функцией cos и φ0=0.

 

Выражение, стоящее под знаком cos или sin, наз. фазой колебания: .

 

Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.

 

Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).

 

Скорость и ускорение при гармонических колебаниях.

 

Согласно определению скорости, скорость – это производная от координаты по времени 

 

 

 

Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на /2.

 

Величина  - максимальная скорость колебательного движения (амплитуда колебаний скорости).

 

 

Следовательно, для скорости при гармоническом колебании имеем: ,

 

 а для случая нулевой начальной фазы  (см. график).

 

 

Согласно определению ускорения, ускорение – это производная от скорости по времени:

 -

 

 вторая производная от координаты по времени. Тогда: .

 

Ускорение при гармоническом колебательном движениитакже изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на /2 и колебания смещения на  (говорят, что колебания происходят в противофазе).

Величина  

 

- максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: ,

 

а для случая нулевой начальной фазы:  (см. график).

 

 

Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).

Сравним выражения для смещения и ускорения при гармонических колебаниях:

             и    .

 

 

 

Можно записать:  -

 

т.е. вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению. Такое уравнение наз. уравнением гармонического колебания. Эта зависимость выполняется для любого гармонического колебания, независимо от его природы. Поскольку мы нигде не использовали параметров конкретной колебательной системы, то от них может зависеть только циклическая частота.

 

Часто бывает удобно записывать уравнения для колебаний в виде: ,

 

где T – период колебания. Тогда, если время выражать в долях периода подсчеты будут упрощаться. Например, если надо найти смещение через 1/8 периода, получим: . Аналогично для скорости и ускорения.

 

 

 

 

 

На примере колебаний тела на нити видим, что в положении равновесия скорость и, следовательно, кинетическая энергия тела максимальны. Если потенциальную энергию отсчитывать от положения равновесия, то она максимальна при амплитудном значении смещения, т.е. когда кинетическая энергия (скорость) равна нулю.

Т.к. мы рассматриваем свободные колебания (происходящие в отсутствие трения), то выполняется закон сохранения механической энергии: сумма кинетической и потенциальной энергий остается неизменной:

 

 

Пусть колебание происходит по закону синуса, тогда скорость меняется по закону косинуса. Запишем выражение для кинетической энергии: .

 

 

 

Согласно закону сохранения энергии, полная энергия будет равна максимальной кинетической, т.к. в положении равновесия потенциальная равна нулю. Тогда: . Для потенциальной энергии получим: 

 

 

 

Т.о. мы видим, что

колебания кинетической и полной энергий происходят в противофазе.

 

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ.

 

Затухающими наз. колебания, энергия (а значит, и амплитуда) которых уменьшается с течением времени. Затухание свободных механических гармонических колебаний связано с убыванием механической энергии за счет действия сил сопротивления и трения.

Если сила сопротивления пропорциональна скорости относительного движения, то амплитуда колебаний изменяется по закону, где x0 – начальная амплитуда, -

 

коэффициент затухания, характеризующий быстроту убывания амплитуды, e– основание натурального логарифма.

 

Затухающие колебания не являются истинно периодическим процессом, т.к. в них никогда не повторяются значения физических величин.

 

Условным периодом затухающих колебаний наз. промежуток времени между двумя состояниями колеблющейся системы, в которых физические величины, характеризующие колебания, принимают аналогичные значения, изменяясь в одном и том же направлении: ,

 

где w0 – собственная частота свободных колебаний.

 

 

 

Мы видим, что период затухающих колебаний больше, чем период незатухающих колебаний с теми же параметрами колебательной системы.

 

При условии d < w0 затухающие колебания описываются уравнением , где  .

 

Если d > w0, то трение в системе очень велико и колебаний не происходит, запас механической энергии тела к моменту его возвращения в положение равновесия полностью расходуется на преодоление трения.

Вынужденные колебания.

 

Вынужденными колебаниями наз. незатухающие колебания системы, которые вызываются действием внешней периодической силы.

 

Если сила не будет периодической, то не возникнет и периодических колебаний. Например, если сила постоянна, то возникает статическое отклонение системы.

Примеры: колебания гребных винтов, лопаток турбины, качелей при раскачивании, мостов и балок при ходьбе и т.д.

 

Сила, вызывающая вынужденные колебания, наз. вынуждающей (возмущающей) силой.

 

Если внешняя вынуждающая сила изменяется по гармоническому закону , то в системе устанавливаются гармонические колебания с частотой внешней вынуждающей силы (процесс установления колебаний изображен на рисунке: вынужденные колебания накладываются на свободные затухающие колебания; после того, как свободные колебания прекращаются, остаются только вынужденные).

Резонанс.

 

Явление возрастания амплитуды колебаний при приближении частоты вынуждающей силы  к собственной частоте колебательной системы 0, называется резонансом.

 

Соответственно данная частота наз. резонансной частотой.

При наличии трения резонансная частота несколько меньше собственной частоты колебательной системы. С энергетической точки зрения при резонансе создаются наилучшие условия для передачи энергии от внешнего источника к колебательной системе.

Резонанс применяется для измерения частоты (частотомеры) вибраций, в акустике. Резонанс необходимо учитывать при расчете балок, мостов, станков и т.д.

 

Автоколебания.

 

Колебательная система, совершающая незатухающие колебания за счет действия источника энергии, не обладающего колебательными свойствами (периодичностью), наз. автоколебательной.

 

Примеры: часы, орган, духовые инструменты, сердечно-сосудистая система, паровые машины и двигатели внутреннего сгорания и т.д.

 

Любая автоколебательная система состоит из 4 частей:

1. колебательная система;

2. источник энергии, компенсирующий потери энергии на преодоление сопротивления;

3. клапан – устройство, регулирующее поступление энергии в колебательную систему определенными порциями и в определенный промежуток времени;

4. обратная связь – устройство для обратного воздействия автоколебательной системы на клапан, управляющее работой клапана за счет процессов в самой колебательной системе.

Волны

 

Волна — распространяющиеся колебания.

Волнами называются всякие возмущения состояния вещества или поля, распространяющиеся в пространстве с течением времени.

 

Основное свойство волны  перенос энергии без переноса вещества.

 

Виды волновых процессов:

1. Механические волны (см. рисунки):

а) упругие.

 б) поверхностные (под действием сил тяжести и поверх­ностного натяжения).

2. Электромагнитные волны (колебания векторов напряженности электрического и индукции магнитного полей, распространяющиеся в пространстве). В отличие от механических, могут распространяться в вакууме.

Распространение механических волн

Распространение продольных волн проиллюстрировано на рисунке:

 

Распространение поперечных волн проиллюстрировано на рисунке: 

Основные характеристики волны.

Гармоническим колебаниям соответствуют  монохроматические волны, обладающие двойной периодичностью:

- во времени  - период, частота;

 

- в пространстве  - длина волны:

     - расстояние между точками, колеблющимися с разностью фаз 2;

- расстояние, на которая волна распространяется за один период;

 

 

Внимание!

1. Каждая последующая точка волны отстает от предыдущей по фазе. Можно сказать, что волновой процесс – процесс распространения фазы колебаний.

2. Точки с разностью фаз 2n (n=1,2,3…) имеют равные смещения, скорости и ускорения (синфазные колебания).

3. Скорость волны конечна и меняется при переходе в другую среду. Т.к. частота задается генератором, то при этом меняется длина волны.

 

 

 

Скорость продольной волны в твердом теле и упругих волн в жидкостях,

 

где Е – модуль объемной упругости, а  - плотность.

Например, при нормальных условиях в воздухе – 330 м/с, в воде - 1430 м/с, в меди 3910 м/с, для алюминия 4880 м/с.

Скорость продольной волны в твердом теле больше, чем поперечной (применяется при исследовании землетрясений).

 

 

Волны в среде

Волновая поверхность – геометрическое место точек, колеблющихся в одинаковой фазе.

Волновой фронт (фронт волны) – геометрическое место точек, до которых доходят колебания к данному моменту времени.

Луч- линия, перпендикулярная волновой поверхности. Показывает направление распространения волны (переноса энергии).

По виду волновой поверхности бывают:

- сферические;

- плоские и т.д.

Для сферической волны ампли­туда колебаний и энергия через единицу поверхности уменьшаются с ростом рас­стояния от источника, при этом амплитуда уменьшается обратно пропорционально расстоянию от точки наблюдения до источника, а энергия – обратно пропорционально квадрату этого расстояния.

Для плоской волны — амплитуда колебаний и энергия через единицу площади поверхнос­ти не меняются при отсут­ствии трения.

Интерференция волн

Явление интерференции возникает при наложении когерент­ных волн.

Когерентные волны - это волны, имеющие одинаковые частоты, постоянную раз­ность фаз, а колебания происходят в одной плоскости.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же — в про­тивоположных фазах, то наблюдается ослабление колебаний.

Постоянное во времени явление взаимного усиления и ослаб­ления колебаний в разных точках среды в результате наложения когерентных волн называется интерференцией. В результате в пространстве образуется устойчивая картина чередования об­ластей усиленных и ослабленных колебаний.

Условиe  максимума

Для двух когерентных волн можно написать пропорцию: .

 

Если колебания вибраторов А и Б совпадают по фазе и име­ют равные амплитуды, то ,

 

где k=0, 1, 2, ...

Тогда 

 

 Если разность хода волн равна целому числу волн (т. е. четному числу по­луволн), то в точке наложения этих волн образуется интерференционный максимум.

Условие минимума

Если волны от вибраторов А и Б придут в точку С в противофазе, то они по­гасят друг друга: А=0. Тогда . Следовательно,  

 

Если разность хода волн равна нечетному числу полуволн, то в точке наложения этих волн образуется интерференционный минимум.

   Если разность хода не определяется данными соотношениями, то наблюдается промежуточный результат: 0<2х.

Распределение энергии при интерференции.

Наличие минимума в точке С означает: энергия W сюда не поступает.

Наличие максимума в точке С означает: происходит увеличе­ние за счет перераспределения энергии в пространстве. Так как энергия пропорциональна квадрату амплитуды, ТО при увели­чении амплитуды в 2 раза энергия увеличивается в 4 раза. Это означает, что в точку С поступает энергия в 4 раза боль­ше энергии одного вибратора при условии: энергии вибраторов равны.

Интерференция присуща волнам любой природы (механиче­ским, электромагнитным).

 

Стоячие волны

Если раскачивать один конец веревки с правильно подобран­ной частотой (другой ее конец закреплен), то к закрепленному концу побежит непрерывная волна, которая затем отразится с потерей полуволны. Интерференция падающей и отраженной волн приведет к возникновению стоячей волны, которая выгля­дит неподвижной.

Устойчивость стоячей волны удовлетворяет следующему условию:  где Lдлина веревки; п=1, 2, 3 и т.д.; vскорость распро­странения волны, которая зависит от натяжения веревки. Стоячие волны возбуждаются в любых телах, способных со­вершать колебания.

Образование стоячих волн является резонансным явлением, которое происходит на резонансных или собственных частотах тела.Точки, где интерференция гасится, называются узлами, а точки, где интерференция усиливается,— пучностями. Помимо поперечных стоячих волн существуют еще и продольные стоячие волны.

Звуковые волны.

Звук – колебательное движение частиц упругой среды, распространяющееся в виде волн (колебания плотности, давления).

Не может распространяться в вакууме! Продольная волна в жидкостях и газах!

 

 

Инфразвуки

(до 16 Гц)

Слышимые звуки

(16 – 20000Гц)

Ультразвуки

(более 20000 Гц)

Гиперзвуки

(109 – 1013 Гц)

Источники

Шум атмосферы, леса, моря. Гром. Взрывы, орудийные выстрелы. Сейсмические волны.

Колебания твердого тела (мембраны, деки, диффузоры громкоговорителей). Колебания ограниченных объемов среды (воздух в музыкальных духовых инструментах, органах, свистках). Голосовой аппарат человека и животных.

Пьезоэлектрические материалы.

Магнитострикционные материалы.

Некоторые животные (дельфины, летучие мыши и др.).

Тепловое движение атомов. Пьезоэлектрические и магнитострикционные материалы.

Применение

Определение места взрыва, выстрела. Предсказание цунами. Исследование атмосферы.

Ориентация в пространстве. Общение, речь, получение информации.

Дефектоскопия, медицина, эхолокация. Физика твердого тела. Получение эмульсий. Ускорение диффузии, некоторых химических реакций. Ориентация в пространстве у некоторых животных.

Изучение состояния вещества. Линии задержки (цветное телевидение, ЭВМ и т.п.)

Диапазоны слышимых звуков

Дети

20 лет

35 лет

50 лет

16 – 22000 Гц

16 – 20000 Гц

25 – 15000 Гц

30 – 12000 Гц

 

Скорость звука зависит от среды и ее состояния, как и для любой механической волны.

Скорость звука при 00С в воздухе 331,5 м/с, в воде – 1430 м/с, в стали – 5000 м/с.

 

Приемники звука.

 

 

1. Естественные: ухо. Обладает высокой чувствительностью (p=10-6 Па) и избирательностью (например, дирижер улавливает звуки отдельных инструментов оркестра).

 

 

2. Искусственные: микрофон. Основная характеристика – чувствительность  (зависит от частоты звука).

 

 

 

 

Характеристики звука.

 

 

1. Спектр – разложение на гармонические колебания по частотам.Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны. Шум - звуки, образующие набор частот, непрерывно заполняющих некоторый интервал (сплошной спектр частот). Музыкальные (тональные) звуки – звуки, образующие линейчатый спектр частот: ча­стоты входящие в состав музыкальных звуков, образуют ряд дискретных значений. Музыкальным звукам соответствуют периодические или почти пе­риодические колебания. Каждая синусоидальная звуковая волна называется тоном.

 

Высота тона зависит от частоты: чем больше частота, тем выше тон. Основным тоном сложного музыкального звука называется тон, соответ­ствующий наименьшей частоте, которая имеется в наборе частот данного звука. Тоны, соответствующие остальным частотам в составе звука, называются оберто­нами. Если частоты обертонов кратны частоте основного тона, то обертоны на­зываются гармоническими, причем основной тон с частотой 0 называется первой гармоникой, обертон со следующей частотой 20 - второй гармоникой и т. д.

 

Музыкальные звуки с одним и тем же основным тоном различаютсятембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.

 

2. Звуковое давление – давление, оказываемое звуковой волной на препятствие.

 

 

3.Интенсивность звуковой волны – энергия, переносимая звуковой волной через единицу поверхности за единицу времени().

 

 

 

 

4. Громкость звука зависит от интенсивности звука, т. е. определяется ампли­тудой колебаний в звуковой волне. Наибольшей чувствительностью ор­ганы слуха обладают к звукам с частотами от 700 до 6000 Гц. В этом диапазоне ухо способно воспринимать звуки с интенсивностью около10-12-10-11 Вт/м2.

Порогом слышимости называется наименьшая интенсивность звуковой волны, которая может быть воспринята органами слуха. Стандартный порог слышимости принимается равным I0=10-12 Вт/м2 при частоте =1 кГц.

Порогом болевого ощущения называется наибольшая интен­сивность звуковой волны, при которой восприятие звука не вызывает болевого ощущения. Порог болевого ощущения зависит от частоты звука (на частоте 1 кГц равен 1 Вт/м2).

Мерой чувствительности органов слуха к восприятию звуковых волн дан­ной интенсивности является уровень интенсивности (громкости): . Единица измерения - децибел