Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции эконометрика (сокращенные).doc
Скачиваний:
153
Добавлен:
26.03.2015
Размер:
321.02 Кб
Скачать

Тема 7. Динамические эконометрические модели

Можно выделить два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели ав­торегрессии и модели с распределенным лагом, в которых значе­ния переменной за прошлые периоды времени (лаговые пере­менные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидае­мый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным и опреде­ляется экономическими единицами с учетом информации, кото­рой они располагают в момент (t — 1).

Величину l, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а времен­ные ряды самих факторных переменных, сдвинутые на один или более моментов времени, — лаговыми переменными.

Интерпретация моделей с распределенным лагом

Эконометрическое моделирование охарактеризованных вы­ше процессов осуществляется с применением моделей, содержа­щих не только текущие, но и лаговые значения факторных пере­менных. Эти модели называются моделями с распределенным лагом. Модель вида является примером модели с распределенным лагом.

Эта модель говорит о том, что если в некоторый момент вре­мени t происходит изменение независимой переменной xt то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.

Коэффициент регрессии b0 при переменной xt характеризует среднее абсолютное изменение yt при изменении xt на 1 ед. свое­го измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора х. Этот коэффици­ент называют краткосрочным мультипликатором.

В момент (t + 1) совокупное воздействие факторной перемен­ной xt на результату, составит (bо + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (bо + b1 + b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.

С учетом конечной величины лага можно сказать, что изме­нение переменной xt в момент t на 1 усл. ед. приведет к общему изменению результата через / моментов времени на (bо + b1 +...+bl) абсолютных единиц.

Введем следующее обозначение:

bо + b1+...+ bl = b

Величину b называют долгосрочным мультипликатором. Он по­казывает абсолютное изменение в долгосрочном периоде t + l ре­зультата у под влиянием изменения на 1 ед. фактора х.

Предположим

βj = bj/b,j = O:l.)

Назовем полученные величины относительными коэффициен­тами модели с распределенным лагом. Если все коэффициенты bj имеют одинаковые знаки, то для любого j

О < βj; < 1 и

В этом случае относительные коэффициенты βj являются ве­сами для соответствующих коэффициентов bj. Каждый из них из­меряет долю общего изменения результативного признака в мо­мент времени (t+j).

Зная величины βj, с помощью стандартных формул можно определить еще две важные характеристики модели множествен­ной регрессии: величину среднего лага и медианного лага. Сред­ний лаг определяется по формуле средней арифметической взве­шенной:

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании резуль­тата на изменение фактора, тогда как высокое его значение гово­рит о том, что воздействие фактора на результат будет сказывать­ся в течение длительного периода времени. Медианный лаг — этовеличина лага, для которого

Это тот период времени, в течение которого с момента време­ни t будет реализована половина общего воздействия фактора на результат.

Интерпретация моделей авторегрессии

Наряду с лаговыми значениями независимых, или фактор­ных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые момен­ты или периоды времени. Например, потребление в момент вре­мени t формируется под воздействием дохода текущего и преды­дущего периодов, а также объема потребления прошлых перио­дов, например потребления в период (t — 1). Эти процессы обыч­но описывают с помощью моделей регрессии, содержащих в ка­честве факторов лаговые значения зависимой переменной, кото­рые называются моделями авторегрессии.

Пусть имеется следующая модель:

Как и в модели с распределенным лагом, b0 в этой модели ха­рактеризует краткосрочное изменение yt под воздействием изме­нения хt на 1 ед. Однако промежуточные и долгосрочный мульти­пликаторы в моделях авторегрессии несколько иные. К моменту времени (t + 1) результатизменился под воздействием измене­ния изучаемого фактора в момент времениt наед., апод воздействием своего изменения в непосредственно предшеству­ющий момент времени — нас1 ед. Таким образом, общее абсо­лютное изменение результата в момент (t + 1) составитед. Аналогично в момент времени (t + 2) абсолютное изменение ре­зультата составитед. и т. д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточных мультипликаторов:

Учитывая, что практически во все модели авторегрессии вво­дится так называемое условие стабильности, состоящее в том, что коэффициент регрессии при переменнойпо абсолютной ве­личине меньше единицы(|c1| < 1), соотношение (7.8) можно преоб­разовать следующим образом:

где

Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основа­ны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие зна­чения

14