Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора2.docx
Скачиваний:
8
Добавлен:
26.03.2015
Размер:
218.11 Кб
Скачать

Шпора, шпаргалка - аналитическая геометрия и математический анализ (формулы, ответы, определения)

1. Векторы. Действия над векторами.

Вектором называют упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. |AB|=|a| - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одиннаковую длинну.

1.умножение на число: произведение вектора А на число l наз. такой вектор В, который обладает след. св-ми: а) А||В.б) l>0, то АВ, l<0, то А¯В. в)l>1, то А<В, )l<1, то А>В. 2. Разделить вектор на число n значит умножить его на число, обратное n: а/n=a*(1/n).

3.Суммой неск-их векторов а и в наз. соединяющий начало 1-го и конец последнего вектора. 4. Разностью векторов а и в наз-ся вектор c, который, будучи сложенным с вектором в даст вектор а.

 

2-3. Декартова прямоугольная система координат. Базис.

Базисом на плоскости называется совокупность фиксированной точки и 2х неколлинеарных векторов, проведенных к ней.

Базисом в пространстве наз. совокупность фиксированной точки в пространстве и 3х некомпланарных векторов.

 

Любой вектор на плоскости может быть разложен по векторам базиса на плоскости. Любой вектор в пространстве может быть разложен по векторам базиса в пространстве.

 

ОС=OA+OB, OA=x*iOB=j*y, OC=xi+yj. Числа х,у наз-ся координатами вектора ОС в данном базисе

 

 

4. Действия над векторами.

а1i+y1j+z1kb2i+y2j+z2k

l*a=l(х1i+y1j+z1k)= l(х1)i+l (y1)j+l(z1)k

a±b=(x1±x2)i+(y1±y2)j+(z1±z2)k

ab=x1x2ii+y1x2ij+x2z1ki+x1y2ij+y1y2jj+ z1y2kj+x1z1ik+y1z2jk+z1z2kk=x1x2+y1y2+z1z2

ii=1; ij=0; и т.д.

скалярное произведение 2х векторов равно сумме произведений соответствующих координат этих векторов.

аа=x2+y2+z2=|a|a{x,y,z}, aa=|a|*|a|, то a2=|a|2

ab=|a|*|b|*cosj

а)ав=0,<=>а^в, x1x2+y1y2+z1z2=0

б)а||в - коллинеарны, если , x1/x2=y1/y2=z1/z2

5. Скалярное произведение векторов и его свойства.

-(“skala”-шкала) 2х векторов а и в наз. число, равное произведению длин этих векторов на cos угла между ними. (а,в)- скалярное произведение. а*в=|а|*|в|*cosj, j=p/2, cosp/2=0, a^b=>ab=0. Равенство “0” скаляргного произведения необходимое и достаточное условие их перпендикулярности (ортогональности).

6. Векторное произведение 2х векторов.

левая ----- правая

Тройка векторов а,в,с наз. правоориентированной (правой), если с конца 3го вектора с кратчайший поворот от 1го ко 2му вектору мы будем видеть против час. стрелки. Если кратчайший поворот от 1го ко 2му по час. стрелки - левая. Векторным произведением 2х векторов а и в наз. такой вектор с, который удовлетворяет условиям: 1. |c|=|a|*|b|*sinj. 2. c^a и c^b. 3. тройка а,в,с-правая.

7. Смешанное произведение векторов и его свойства.

Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом:a*b*c=[a*b]*c=a*[b*c], где

a={ax,ay,az}

b={bx,by,bz}

c={cx,cy,cz}

Св-ва: 1. При перестановке 2х сомножителей:

a*b*c=-b*c*a

2. не меняется при перестановке циклических сомножителей:

a*b*c=c*a*b=b*c*a

3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a*b*c=0

  б)если некомпланарные вектора a,b,c привести к 1 началу, то |a*b*c|=Vпараллепипеда, построенного на этих векторах

если a*b*c>0, то тройка a,b,c - правая

если a*b*c<0, то тройка a,b,c - левая

8. Уравнение линии и поверхности.

1. Уравнение сферы. Сфера- геометрическое место точек, равноудаленных от 1ой точки, называемой центром.

 

O(a,b,c)

|OM|=r, OM={x-a,y-b,z-c}

r2=(x-a)2+(y-b)2+(z-c)2- уравнение сферы. x2+y2+z2=r2- ур-е сферы с центром точке(0,0).

F(x,y,z)=0- ур-е поверхности - ур-ю, удовлетворяющему координатам x,y,z любой точки, лежащей на поверхности.

2. Уравнение окружности

|OM|=r, OM={x-a,y-b)

r2=(x-a)2+(y-b)2+(z-c)2- ур-е окружности

а=b=0, то x2+y2=r2

F(x,y)=0- ур-е линии на плоскости.

9. Плоскость в пространстве.

Ур-е в плоскости, проходящей через данную точку, перпендикулярно заданному вектору.

 

N-вектор нормали

M0M{x-x0,y-y0,z-z0}

 

Для того, чтобы точка MÎP, необходимо и достаточно чтобы вектора N^M0M(т.е. N*M0M=0)

A(x-x0)+B(y-y0)+С(z-z0)=0 - ур-е плоскости, проходящей через данную точку ^вектору.

10. Общее уравнение плоскости.

Ax+By+Сz-Ax0-By0-Сz0=0

-Ax0-By0-Сz0=D, где D=Ax+By+Сz

Ax+By+Сz+D=0

Частный случай:

Если D=0, то Ax+By+Сz=0(проходит ч/з 0;0)

Если A=0, то By+Сz+D=0

Если B=0, то Ax +Сz+D=0

Если C=0, то Ax+By+D=0

Если A=B=0, то Сz+D=0

Если A=C=0, то By+D=0

Если A=D=0, то By+Сz=0

Если B=D=0, то Ay+Сz=0

11. Взаимное расположение плоскостей.

N1,N2-нормальные векторы плоскости.

P:A1x+B1y+C1z+D1=0

Q:A2x+B2y+C2z+D2=0

P^Q{A1,B1,C1}

Q^N2{A2,B2,C2}

1)Пусть P^Q<=>N1^N2

A1A2+B1B2+C1C2=0 условие перпендикулярности P^Q.

2) Пусть P^Q<=> N1^N2

A1/A2=B1/B2=C1/C2- Условие параллельности 2х плоскостей.

A1/A2=B1/B2=C1/C2=D1/D2- Условие совпадения 2х плоскостей.

12. Каноническое уравнение прямой в пространстве.

M0M{x-x0,y-y0,z-z0}

Чтобы точка МÎпрямой(или лежала на ней) необх. и достаточно, чтобы M0M||S

13. Уравнение прямой в пространстве, проходящей ч/з 2 заданные точки.

      l        m     n

S{x2-x1,y2-y1,z2-z1}

14. Прямая, как пересечение плоскостей. Нахождение начальной точки и направляющего вектора прямой.

P:A1x+B1y+C1z+D1=0

Q:A2x+B2y+C2z+D2=0

Общее уравнение прямой в пространстве.

Для того, чтобы перейти от общего к каноническому ур-ю прямой, надо задать начальную точку и направляющий вектор:

1. Найдем начальную точку:

Z=0 

M0(x0,y0,0), т.к. Z=0

2. Найдем направляющий вектор S-?

P^N1{A1,B1,C1}

Q^N1{A2,B2,C2}

S=N1*N2

 

 

16. Взаимное расположение прямой на плоскости.

P:A1x+B1y+C1z+D1=0^N1{A1,B1}

Q:A2x+B2y+C2z+D2=0^N2{A2,B2}

а)

то  

б)

p q<=> N1||N2, то A1/A2=B1/B2

в)

p||q<=> N1^N2, то A1A2+B1B2=0

 

17. Общее уравнение прямой линии на плоскости. Его частные случаи.

Сначала запишем ур-е прямой, проходящей через заданную точку ^ заданному вектору.

M0(x0,y0)

M0M{x-x0,y-y0}

n*M0M=0

A(x-x0)+B(y-y0)=0

Ax+By-Ax0-By0=0

-Ax0-By0=C

Ax+By+C=0-общее уравнение прямой на плоскости.

18-19. Каноническое уравнение прямой линии на плоскости. Уравнение прямой, проходящей через 2 точки. Уравнение с угловым коэффициентом.

y-y1=k1(x-x1)

y=k1x-k1x1+y1

y1-k1x1=b

y=k1x+b

ур-е прямой с угловым коэффициентом k.

 

Пусть даны 2 точки M1(x1,y1), M2(x2,y2) и x1¹x2, y1¹y2. Для составления уравнения прямой М1М2 запишем уравнения пучка прямых, проходящих через точку М1: y-y1=k(x-x1). Т.к. М2лежит на данной прямой, то чтобы выделить ее из пучка, подставим координаты точки М2 в уравнение пучка М1: y-y1=k(x-x1) и найдем k:

Теперь вид искомой прямой имеет вид:

 или :

Уравнение прямой, проходящей ч/з 2

 

20-21. Угол между прямыми на плоскости. Условия || и^.

а) 

    

S1{l1,m1S2{l2,m2},

или

p:y=k1x+b1, k1=tgj1

q:y=k2x+b2, k2=tgj2 =>tgj=tg(j2-j1)=

=(tgj2-tgj1)/(1+ tgj1tgj2)=

=(k2-k1)/(1+k1k2).

б) p||q, tgj=0, k1=k2

в)p^q,то 

 

22. Расстояние от точки до прямой на плоскости и до плоскости в пространстве.

1. Ax+By+C=0, M0(x0,y0)

2. Пусть плоскость задана ур-ем Ax+By+Cz+D=0

23. Кривые линии 2-го порядка.

Кривые 2го порядка описываются с помощью общего ур-я:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где

а) Каноническое ур-е эллипса

 - Каноническое ур-е эллипса

Если a=b, то x2+b2=a2 - ур-е окружности.

б) Ур-е гиперболы: x2/a2-y2/b2=1

в) ур-е параболы: y2=2px или y=ax2

г) ур-е сферы: x2+y2+z22 (r2=(x-a)2+(y-b)2+(z-c)2)

д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1

\

 

24. Парабола и ее свойства.

Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у - текущие координаты, а- нек. число, наз. параболой.

Если вершина нах. в О(0,0), то ур-е примет вид

y2=2px-симметрично отн. оси ОХ

х2=2pу-симметрично отн. оси ОУ

Точка F(p/2,0) наз. фокусом параболы, а прямая  x=-p/2 - ее директриса.

Любой точке М(х,у), принадлежащей параболе, расстояние до фокуса = r=p/2

Св-ва:

1. парабола предст. собой ¥ точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.

25.Эллипс и его свойства:

Кривая второго порядка наз. эллипсом если коэффициенты А и L имеют одинаковые знаки

Аx2+Cy2=d

ур.-е 

наз. канонич. ур.-ем эллипса, где При а=в представляет собой ур-е окружности х2+y22

Точки F1(-c,0) и F2(c,0) - наз. фокусами эллипса а.

Отношение e=с/а наз. его эксцентриситетом (0<=e<=1)

Точки A1,A2,B1,B2 -вершины эллипса.

Св-во: Для любой точки эллипса сумма расстояний этой точки до фокусов есть величина постоянной, =2а.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]