
- •Предисловие
- •Введение
- •1. Хроматографические методы
- •1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- •Изотермы адсорбции
- •Изотермы адсорбции и форма фронтов зон
- •1.3 Теория теоретических тарелок
- •6.2. Оценка параметров эффективности и селективности хроматографической колонки
- •6.5. Степень разделения и ее связь с параметрами
- •Влияние условий анализа на эффективность разделения
- •7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- •8. Влияние температуры на параметры процесса разделения
- •1.5. Газовая хроматография
- •3.2. Газовый хроматограф. Принципиальная схема
- •Устройства ввода пробы в хроматограф
- •Ввод пробы
- •9.2. Чувствительность детектора. Предел обнаружения
- •9.3. Линейность детектора
- •9.4. Селективность детектора
- •1.3.5.1. Детекторы по теплопроводности
- •1.3.5.3. Пламенно-ионизационный детектор
- •Значения инкрементов функциональных групп и связей
- •Величины относительных молярных поправочных коэффициентов
- •1.3.5.4. Детектор электронного захвата
- •1.3.5.5. Детектор ионизационно-резонансный
- •1.5.5.6. Термоионный детектор
- •1.3.5.9.Фотоионизационный детектор (дфи)
- •3.1. Варианты метода газовой хроматографии
- •Силы дисперсионного взаимодействия
- •Силы индукционного взаимодействия
- •Силы ориентационного взаимодействия
- •Силы полухимического и химического взаимодействий
- •12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по особенностям внутренней геометрической структуры
- •12.4. Важнейшие адсорбенты и характеристика их свойств
- •Углеродные адсорбенты
- •Адсорбенты с большим содержанием кремниевой кислоты
- •Оксид алюминия
- •Органические сорбенты
- •12.5. Приложение теории адсорбции к газовой хроматографии
- •12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- •13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- •Стеклянные микрошарики
- •Силикагель
- •Оксид алюминия
- •Политетрафторэтилен
- •13.3. Неподвижные жидкие фазы
- •Химическая активность
- •Давление паров и термостойкость
- •Размеры молекул
- •Вязкость
- •Способность к растворению разделяемых соединений
- •Разделительные свойства
- •13.4. Классификация неподвижных жидких фаз
- •Шкала относительной полярности неподвижных жидких фаз
- •Классификация неподвижных жидких фаз по индексам удерживания Ковача
- •Классификация неподвижных жидких фаз по веществам-стандартам
- •Классификация неподвижных жидких фаз Мак-Рейнольдса
- •13.5. Важнейшие неподвижные жидкие фазы
- •Неароматические углеводороды
- •Ароматические углеводороды
- •Силиконы
- •Фенилсиликоны
- •Спирты, эфиры и производные углеводов
- •Полигликоли
- •Ароматические простые эфиры
- •Сложные эфиры
- •7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- •7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- •4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- •3. Жидкостная хроматография
- •Основное оборудование для тсх
- •Техника эксперимента в тсх
- •Сверхкритическая флюидная хроматография
- •Критические величины для подвижных фаз в сфх
- •2. Свойства сверхкритических флюидов, используемые
- •4. Приборное оформление
- •5. Современные задачи сфх с насадочными колонками
- •6. Заключение
- •6. Капиллярный электрофорез Введение
- •Принятые термины и сокращения
- •Физико-химические основы метода капиллярного электрофореза
- •Основные варианты капиллярного электрофореза
- •Аппаратура Общее устройство систем кэ
- •Капилляры
- •Источники высокого напряжения
- •Ввод пробы
- •Детекторы
- •Системы термостабилизации. Сбор и обработка данных
- •Эффективность разделения
- •Чувствительность метода
- •Разрешение и селективность разделения
- •Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- •Количественная обработка результатов анализа
- •Объекты для анализа методом кэ. Подготовка пробы
- •Электрофореза и примеры использования Анализ объектов окружающей среды.
- •Анализ неорганических анионов с обращением эоп (рис. 9)
- •Анализ неорганических анионов без обращения эоп (рис. 9)
- •Анализ неорганических катионов в яблочном соке (рис. 9)
- •Анализ ионного состава воды. Определение неорганических
- •Особенности методики, практические рекомендации
- •В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- •1.9. Качественный хроматографический анализ
- •5. Количественный анализ
- •11.1. Параметры пика как характеристика количества вещества
- •Параметр h
- •Параметр hl
- •Параметр а
- •Величины допустимых погрешностей задания параметров разделения
- •5.3.1 Методы триангуляции
- •7. Практическое использование хроматографии в контроле качества продукции
Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того или иного детектора.
Детектирование в системах КЭ может осуществляться:
непосредственно у выходного конца капилляра в режиме реального времени. Этот способ характерен для большинства систем КЭ;
непосредственно на выходном конце капилляра;
вне системы КЭ, при этом, детектор представляет собой отдельный прибор (например, масс-спектрометр) и соединен с системой капиллярного электрофореза специальным интерфейсом.
Таблица 2.
Характеристики основных методов детектирования, применяемых в КЭ.
Детектирование |
Селек- тив ность |
Универ-саль-ность |
Качест-венная инфор-мация о веществе |
Детек-тирова-ние в капил-ляре |
Примерный предел детектирования, моль/л |
Частота исполь-зования, % |
Прямое фотометрическое в УФ-области *(для диодной матрицы) |
+ |
— |
+ * |
+ |
10-5-10-7 |
55 |
Косвенное фотометри-ческое в УФ-области |
— |
+ |
— |
+ |
10-4-10-6 |
5 |
Флуориметрическое: прямое косвенное |
+ — |
— + |
— — |
+ + |
10-7-10-9 10-6-10-8 |
15 2 |
Индуцированное лазером флуориметрическое |
+ |
— |
— |
+ |
10-13-10-16 |
5-7 |
Масс-спектрометрическое |
+ |
+ |
+ |
— |
10-8-10-10 |
10 |
Амперометрическое: прямое косвенное |
+ — |
— + |
— — |
— — |
10-7-10-10 10-6-10-8 |
2 <1 |
В капиллярном электрофорезе используют те же принципы детектирования, что и в ВЭЖХ. Важным преимуществом КЭ перед ВЭЖХ, помимо плоского профиля ЭОП, является отсутствие соединительных гидравлических линий между узлами ввод пробы–капилляр и капилляр–детектор, которые в случае ВЭЖХ могут приводить к уширению зоны вещества за счет внеколоночного размывания.
Основным вариантом детектирования является фотометрическое, основанное на поглощении веществом УФ или видимого света. Фотометрические детекторы в КЭ разделяются на несколько типов.
Детекторы с фиксированной длиной волны: источники света с линейчатым спектром ртутная лампа (254 нм), кадмиевая лампа (229 нм) и цинковая лампа (214 нм). Это наиболее простые системы; в приборах «Капель-103, -104» фотометрический детектор работает при = 254 нм, поэтому отклик детектора будет наблюдаться только тогда, когда определяемый компонент имеет заметное поглощение для указанной . Этот случай называется прямым детектированием, электрофореграмма представляет собой набор положительных пиков, возвышающихся над базовой линией. Так определяются органические соединения с ароматической структурой или сопряженными двойными связями, некоторые неорганические соединения и др.
Детекторы с изменяемой длиной волны: источниками света служат дейтериевые (190–350 нм) и вольфрамовые (340–850 нм) лампы. Необходимая спектральная селекция достигается применением монохроматоров или узкополосных светофильтров.
В детекторах на диодной матрице (ДДМ) световой поток, прошедший через капилляр, разлагается в спектр с помощью высококачественного светосильного монохроматора, а матрица фотодиодов регистрирует сигналы в УФ и видимой частях спектра (УФ-В-детекторы), обеспечивая запись в режиме сканирования. Данные, полученные одновременно на 25 различных , обрабатываются компьютером, выделяющим сигнал при оптимальной и вычитающим фон. Применение ДДМ обеспечивает получение аналитических данных высокой достоверности. Например, при определении гомогенности (однородности) пика осуществляется спектральный контроль в максимуме и по обоим склонам пика. Если пик однороден, то все три спектра идентичны. Для индивидуального вещества отношение высот пиков на электрофореграммах, записанных при двух различных , есть величина постоянная. Гомогенность пика проверяется также при сравнении параметров миграции соединения, полученных при двух разных (для ДДМ обе электрофореграммы получаются в ходе одного анализа). Идентификацию пика проводят путем сравнения времен миграции и спектров стандарта и компонента пробы.
Для соединений, анализируемых с помощью КЭ и не поглощающих в УФ-диапазоне, возможна регистрация методом косвенного УФ-детектирования. В этом случае в состав ведущего электролита вводят хромофор вещество, поглощающее на требуемой . Так, в случае определения анионов используют поглощающий анион, например, CrO42 или фталат, а при определении катионов используют катионы ароматических аминов или гетероциклов, в частности, катион бензимидазолия. Так как ионная сила ведущего электролита в процессе разделения остается постоянной, в зоне, где находится непоглощающий ион, уменьшается концентрация поглощающего иона. Обмен происходит строго эквивалентно, на электрофореграмме наблюдаются обратные (отрицательные) пики, площади которых пропорциональны концентрациям ионов. Косвенное УФ-детектирование является универсальным и позволяет регистрировать все присутствующие в анализируемом растворе ионы.