
- •Предисловие
- •Введение
- •1. Хроматографические методы
- •1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- •Изотермы адсорбции
- •Изотермы адсорбции и форма фронтов зон
- •1.3 Теория теоретических тарелок
- •6.2. Оценка параметров эффективности и селективности хроматографической колонки
- •6.5. Степень разделения и ее связь с параметрами
- •Влияние условий анализа на эффективность разделения
- •7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- •8. Влияние температуры на параметры процесса разделения
- •1.5. Газовая хроматография
- •3.2. Газовый хроматограф. Принципиальная схема
- •Устройства ввода пробы в хроматограф
- •Ввод пробы
- •9.2. Чувствительность детектора. Предел обнаружения
- •9.3. Линейность детектора
- •9.4. Селективность детектора
- •1.3.5.1. Детекторы по теплопроводности
- •1.3.5.3. Пламенно-ионизационный детектор
- •Значения инкрементов функциональных групп и связей
- •Величины относительных молярных поправочных коэффициентов
- •1.3.5.4. Детектор электронного захвата
- •1.3.5.5. Детектор ионизационно-резонансный
- •1.5.5.6. Термоионный детектор
- •1.3.5.9.Фотоионизационный детектор (дфи)
- •3.1. Варианты метода газовой хроматографии
- •Силы дисперсионного взаимодействия
- •Силы индукционного взаимодействия
- •Силы ориентационного взаимодействия
- •Силы полухимического и химического взаимодействий
- •12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по особенностям внутренней геометрической структуры
- •12.4. Важнейшие адсорбенты и характеристика их свойств
- •Углеродные адсорбенты
- •Адсорбенты с большим содержанием кремниевой кислоты
- •Оксид алюминия
- •Органические сорбенты
- •12.5. Приложение теории адсорбции к газовой хроматографии
- •12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- •13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- •Стеклянные микрошарики
- •Силикагель
- •Оксид алюминия
- •Политетрафторэтилен
- •13.3. Неподвижные жидкие фазы
- •Химическая активность
- •Давление паров и термостойкость
- •Размеры молекул
- •Вязкость
- •Способность к растворению разделяемых соединений
- •Разделительные свойства
- •13.4. Классификация неподвижных жидких фаз
- •Шкала относительной полярности неподвижных жидких фаз
- •Классификация неподвижных жидких фаз по индексам удерживания Ковача
- •Классификация неподвижных жидких фаз по веществам-стандартам
- •Классификация неподвижных жидких фаз Мак-Рейнольдса
- •13.5. Важнейшие неподвижные жидкие фазы
- •Неароматические углеводороды
- •Ароматические углеводороды
- •Силиконы
- •Фенилсиликоны
- •Спирты, эфиры и производные углеводов
- •Полигликоли
- •Ароматические простые эфиры
- •Сложные эфиры
- •7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- •7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- •4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- •3. Жидкостная хроматография
- •Основное оборудование для тсх
- •Техника эксперимента в тсх
- •Сверхкритическая флюидная хроматография
- •Критические величины для подвижных фаз в сфх
- •2. Свойства сверхкритических флюидов, используемые
- •4. Приборное оформление
- •5. Современные задачи сфх с насадочными колонками
- •6. Заключение
- •6. Капиллярный электрофорез Введение
- •Принятые термины и сокращения
- •Физико-химические основы метода капиллярного электрофореза
- •Основные варианты капиллярного электрофореза
- •Аппаратура Общее устройство систем кэ
- •Капилляры
- •Источники высокого напряжения
- •Ввод пробы
- •Детекторы
- •Системы термостабилизации. Сбор и обработка данных
- •Эффективность разделения
- •Чувствительность метода
- •Разрешение и селективность разделения
- •Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- •Количественная обработка результатов анализа
- •Объекты для анализа методом кэ. Подготовка пробы
- •Электрофореза и примеры использования Анализ объектов окружающей среды.
- •Анализ неорганических анионов с обращением эоп (рис. 9)
- •Анализ неорганических анионов без обращения эоп (рис. 9)
- •Анализ неорганических катионов в яблочном соке (рис. 9)
- •Анализ ионного состава воды. Определение неорганических
- •Особенности методики, практические рекомендации
- •В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- •1.9. Качественный хроматографический анализ
- •5. Количественный анализ
- •11.1. Параметры пика как характеристика количества вещества
- •Параметр h
- •Параметр hl
- •Параметр а
- •Величины допустимых погрешностей задания параметров разделения
- •5.3.1 Методы триангуляции
- •7. Практическое использование хроматографии в контроле качества продукции
Аппаратура Общее устройство систем кэ
Минимальный состав системы, реализующей метод капиллярного электрофореза, должен включать следующие узлы: кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор и систему сбора, обработки и вывода информации (рис. 5).
Рис. 5. Устройство системы капиллярного электрофореза.
Дополнительными устройствами в системах КЭ являются автосемплер и блок жидкостного охлаждения капилляра.
Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line) полиимидное покрытие в зоне детектирования снимают, оставляя для прохождения света зону чистого кварца. Внутренний диаметр капилляров обычно составляет 50 или 75 мкм, внешний диаметр 365 мкм, длина капилляров 20–100 см. Различают общую (Lобщ) и эффективную (Lэфф) длину капилляра: в первом случае речь идет о полной длине капилляра от входного до выходного конца, а во втором об участке от входного конца до зоны детектирования (рис. 5).
Большинство разделений в КЭ ведут на непокрытых изнутри немодифицированных капиллярах. Их подготовка к анализу начинается с промывки раствором щелочи для обеспечения диссоциации силанольных групп кварца и возникновения ЭОП. Анализ соединений, способных адсорбироваться на стенках кварцевого капилляра (белки, красители), или необходимость обращения ЭОП требуют использования покрытых капилляров (ковалентные покрытия или динамические).
В зоне ввода пробы торцевой срез должен быть выполнен строго под углом 90° к боковым стенкам капилляра. В противном случае наблюдаются пики с «хвостами» или невоспроизводимый ввод пробы.
С точки зрения анализа кондиционное состояние капилляра следует понимать так, что выполняемые последовательно анализы должны быть воспроизводимы по временам миграции пиков и по площадям пиков. Общая скорость электромиграции иона складывается из скорости движения иона под действием электрического поля и скорости движения ЭОП. Первая зависит от природы иона, а вторая от свойств диффузной части двойного электрического слоя в капилляре, мерой которой является -потенциал поверхности. Причиной нестабильности времен миграции может служить изменение диффузной части второй обкладки двойного электрического слоя. Различные примеси из ведущего электролита и растворов проб, сорбируясь на поверхности капилляра, уменьшают -потенциал и, следовательно, увеличивают времена миграции компонентов. Сорбция может быть обратимой или практически необратимой в зависимости от химической природы примесей и состава электролита. Одновременно изменение времени миграции пика изменяет его ширину и площадь (площадь пика пропорциональна времени миграции: поздно мигрирующие компоненты перемещаются через зону детектирования медленнее).
При подготовке к работе капилляр обычно промывают раствором кислоты, водой и раствором щелочи. Цель первой операции заключается в удалении с поверхности примесей, в частности, многовалентных катионов, и первичном гидролизе силоксановых групп. Промывка водой способствует удалению кислоты и дальнейшему гидролизу поверхности. Наконец, щелочная промывка предназначена для удаления примесей, не реагирующих с кислотой, и максимальной диссоциации образовавшихся силанольных групп. Финишная промывка водой имеет целью удалить из капилляра щелочь. Для того чтобы теперь привести очищенную и подготовленную поверхность в равновесие с раствором ведущего электролита, капилляр промывают собственно раствором ведущего электролита. При правильно проведенном кондиционировании времена миграции контрольных или тестовых веществ остаются постоянными при последовательных вводах. Если времена миграции тестовых веществ уменьшаются, это свидетельствует о недостаточном времени кондиционирования.
При анализе на поверхности кварца могут сорбироваться различные примеси: многовалентные катионы, склонные к образованию гидроксокомплексов, катионные ПАВ, вещества белковой природы, обладающие свойствами амфолитов, нефтепродукты, некоторые полимеры и т. п. Все они нарушают структуру диффузного слоя и уменьшают -потенциал, что приводит к уменьшению скорости ЭОП и к увеличению времени миграции анализируемых ионов.
Часть сорбированных примесей удаляется с поверхности при промывке раствором ведущего электролита (если сорбция обратимая), и, подбирая время промывки, удается при последовательных анализах сохранять постоянными времена миграции компонентов. Если же в пробах имеются примеси, сорбирующиеся практически необратимо, приходится периодически промывать капилляр растворами, которые способны удалить накопившиеся примеси, и далее снова кондиционировать капилляр относительно раствора ведущего электролита. Эффективным средством борьбы с такими примесями является их предварительное удаление на этапе подготовки пробы к анализу.