- •Предисловие
- •Введение
- •1. Хроматографические методы
- •1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- •Изотермы адсорбции
- •Изотермы адсорбции и форма фронтов зон
- •1.3 Теория теоретических тарелок
- •6.2. Оценка параметров эффективности и селективности хроматографической колонки
- •6.5. Степень разделения и ее связь с параметрами
- •Влияние условий анализа на эффективность разделения
- •7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- •8. Влияние температуры на параметры процесса разделения
- •1.5. Газовая хроматография
- •3.2. Газовый хроматограф. Принципиальная схема
- •Устройства ввода пробы в хроматограф
- •Ввод пробы
- •9.2. Чувствительность детектора. Предел обнаружения
- •9.3. Линейность детектора
- •9.4. Селективность детектора
- •1.3.5.1. Детекторы по теплопроводности
- •1.3.5.3. Пламенно-ионизационный детектор
- •Значения инкрементов функциональных групп и связей
- •Величины относительных молярных поправочных коэффициентов
- •1.3.5.4. Детектор электронного захвата
- •1.3.5.5. Детектор ионизационно-резонансный
- •1.5.5.6. Термоионный детектор
- •1.3.5.9.Фотоионизационный детектор (дфи)
- •3.1. Варианты метода газовой хроматографии
- •Силы дисперсионного взаимодействия
- •Силы индукционного взаимодействия
- •Силы ориентационного взаимодействия
- •Силы полухимического и химического взаимодействий
- •12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по особенностям внутренней геометрической структуры
- •12.4. Важнейшие адсорбенты и характеристика их свойств
- •Углеродные адсорбенты
- •Адсорбенты с большим содержанием кремниевой кислоты
- •Оксид алюминия
- •Органические сорбенты
- •12.5. Приложение теории адсорбции к газовой хроматографии
- •12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- •13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- •Стеклянные микрошарики
- •Силикагель
- •Оксид алюминия
- •Политетрафторэтилен
- •13.3. Неподвижные жидкие фазы
- •Химическая активность
- •Давление паров и термостойкость
- •Размеры молекул
- •Вязкость
- •Способность к растворению разделяемых соединений
- •Разделительные свойства
- •13.4. Классификация неподвижных жидких фаз
- •Шкала относительной полярности неподвижных жидких фаз
- •Классификация неподвижных жидких фаз по индексам удерживания Ковача
- •Классификация неподвижных жидких фаз по веществам-стандартам
- •Классификация неподвижных жидких фаз Мак-Рейнольдса
- •13.5. Важнейшие неподвижные жидкие фазы
- •Неароматические углеводороды
- •Ароматические углеводороды
- •Силиконы
- •Фенилсиликоны
- •Спирты, эфиры и производные углеводов
- •Полигликоли
- •Ароматические простые эфиры
- •Сложные эфиры
- •7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- •7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- •4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- •3. Жидкостная хроматография
- •Основное оборудование для тсх
- •Техника эксперимента в тсх
- •Сверхкритическая флюидная хроматография
- •Критические величины для подвижных фаз в сфх
- •2. Свойства сверхкритических флюидов, используемые
- •4. Приборное оформление
- •5. Современные задачи сфх с насадочными колонками
- •6. Заключение
- •6. Капиллярный электрофорез Введение
- •Принятые термины и сокращения
- •Физико-химические основы метода капиллярного электрофореза
- •Основные варианты капиллярного электрофореза
- •Аппаратура Общее устройство систем кэ
- •Капилляры
- •Источники высокого напряжения
- •Ввод пробы
- •Детекторы
- •Системы термостабилизации. Сбор и обработка данных
- •Эффективность разделения
- •Чувствительность метода
- •Разрешение и селективность разделения
- •Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- •Количественная обработка результатов анализа
- •Объекты для анализа методом кэ. Подготовка пробы
- •Электрофореза и примеры использования Анализ объектов окружающей среды.
- •Анализ неорганических анионов с обращением эоп (рис. 9)
- •Анализ неорганических анионов без обращения эоп (рис. 9)
- •Анализ неорганических катионов в яблочном соке (рис. 9)
- •Анализ ионного состава воды. Определение неорганических
- •Особенности методики, практические рекомендации
- •В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- •1.9. Качественный хроматографический анализ
- •5. Количественный анализ
- •11.1. Параметры пика как характеристика количества вещества
- •Параметр h
- •Параметр hl
- •Параметр а
- •Величины допустимых погрешностей задания параметров разделения
- •5.3.1 Методы триангуляции
- •7. Практическое использование хроматографии в контроле качества продукции
6. Капиллярный электрофорез Введение
С начала 80-х годов XX века получил становление и активное развитие новый инструментальный метод, относящийся к комбинированным методам разделения и анализа капиллярный электрофорез (КЭ). Он позволяет анализировать ионные и нейтральные компоненты различной природы с высокой экспрессностью и уникальной эффективностью. В основе КЭ лежат электрокинетические явления электромиграция ионов и других заряженных частиц и электроосмос. Эти явления возникают в растворах при помещении их в электрическое поле высокого напряжения. Если раствор находится в тонком кварцевом капилляре, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости (электроосмотический поток, ЭОП), в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого вида заряженных частиц. В то же время, такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные и др., в капилляре заметно ослаблены, благодаря чему достигаются рекордные эффективности разделений.
Традиционно КЭ сравнивают с высокоэффективной жидкостной хроматографией (ВЭЖХ), поскольку в обоих методах разделение происходит в ограниченном пространстве (капилляре или колонке) с участием движущейся жидкой фазы (буферного раствора или подвижной фазы (элюента)) и для регистрации сигналов используют схожие принципы детектирования и программы обработки данных. Тем не менее, у методов есть отличия, относящиеся к достоинствам капиллярного электрофореза:
— высокая эффективность разделения (сотни тысяч теоретических тарелок), недоступная ВЭЖХ и связанная с плоским профилем ЭОП
— малый объем анализируемой пробы и буферов (не более 1–2 мл в день), при этом практически не требуется применение высокочистых, дорогостоящих органических растворителей
— отсутствие колонки, сорбента, проблем с его старением и, значит, заменой колонки
— простая и недорогая аппаратура
— экспрессность и низкая себестоимость единичного анализа.
Из ограничений КЭ следует отметить невысокую, по сравнению с ВЭЖХ, концентрационную чувствительность и требование к анализируемым соединениям растворяться в воде или водно-органических смесях. В то же время, недостаточную чувствительность определения при использовании УФ-детектирования (из-за малой длины оптического пути, равного внутреннему диаметру капилляра) может скомпенсировать использование таких видов детектирования, как лазерно-индуцированное флуориметрическое или масс-спектрометрическое в сочетании с различными приемами on-line концентрирования пробы (т. н. стэкинг и свиппинг).
Системы капиллярного электрофореза «Капель» предназначены для количественного и качественного определения состава проб веществ в водных и водно-органических растворах методом КЭ (табл. 1).
Таблица 1.
Технические характеристики приборов серии «Капель»
|
Характеристики |
Капель-103Р |
Капель-103РТ |
Капель-104Т |
Капель-105 (105М) |
|
Фотометричес-кий детектор |
254 нм |
190-380 нм | ||
|
Высоковольт-ный блок |
Постоянное напряжение 1-25 кВ, с шагом 1 кВ, сменная полярность, ток 0-200 мкА | |||
|
Ввод пробы |
Гидродинамический или электрокинетический | |||
|
Смена проб |
Ручная |
Автоматическая, с двумя автосемплерами на 10 входных и 10 выходных пробирок | ||
|
Промывка |
При постоянном давлении 1000 мбар | |||
|
Капилляр |
Кварцевый, длина 30-100 см, внутренний диаметр 50 или 75 мкм | |||
|
Охлаждение капилляра |
Принудительное воздушное |
Жидкостное с заданием и контролем температуры теплоносителя (в диапазоне от -10 до +30оС от внешней температуры) | ||
|
Возможность задания и изме-нения парамет-ров в ходе анализа |
Время анализа, давление, напряжение |
Время анализа, давление, температура, напряжение |
Время анали-за, длина вол-ны, давление, температура, напряжение | |
|
Питание |
187-242 В, 50/60 Гц | |||
|
Потребляемая мощность, Вт |
80 |
150 |
200 | |
|
Габариты, мм |
420330360 |
420350360 |
500500500 | |
|
Масса, кг |
16 |
25 (30 для 105М) | ||
|
Сбор, обработка и ввод данных осуществляется с помощью персонального компьютера, на котором установлена программы сбора и обработки хромато-графических данных «МультиХром» 1,5х и 2,5х или «Эльфоран» для Windows®. | ||||
«Капель-103Р» наиболее простая модель с ручным управлением и пошаговым принципом работы. В прибор устанавливается только одна пробирка с анализируемым раствором. На приборе любой модификации без ограничений могут быть реализованы методики, использующие основные варианты КЭ капиллярный зонный электрофорез (КЗЭ) или мицеллярную электрокинетическую хроматографию (МЭКХ). Первый вариант предназначен для анализа только ионных компонентов проб, второй для анализа ионных и молекулярных форм веществ.
В системах «Капель» можно задавать и изменять в ходе анализа: давление, напряжение, время анализа, температуру (для систем с жидкостным охлаждением капилляра), длину волны (модели 105/105М).
