
- •Предисловие
- •Введение
- •1. Хроматографические методы
- •1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- •Изотермы адсорбции
- •Изотермы адсорбции и форма фронтов зон
- •1.3 Теория теоретических тарелок
- •6.2. Оценка параметров эффективности и селективности хроматографической колонки
- •6.5. Степень разделения и ее связь с параметрами
- •Влияние условий анализа на эффективность разделения
- •7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- •8. Влияние температуры на параметры процесса разделения
- •1.5. Газовая хроматография
- •3.2. Газовый хроматограф. Принципиальная схема
- •Устройства ввода пробы в хроматограф
- •Ввод пробы
- •9.2. Чувствительность детектора. Предел обнаружения
- •9.3. Линейность детектора
- •9.4. Селективность детектора
- •1.3.5.1. Детекторы по теплопроводности
- •1.3.5.3. Пламенно-ионизационный детектор
- •Значения инкрементов функциональных групп и связей
- •Величины относительных молярных поправочных коэффициентов
- •1.3.5.4. Детектор электронного захвата
- •1.3.5.5. Детектор ионизационно-резонансный
- •1.5.5.6. Термоионный детектор
- •1.3.5.9.Фотоионизационный детектор (дфи)
- •3.1. Варианты метода газовой хроматографии
- •Силы дисперсионного взаимодействия
- •Силы индукционного взаимодействия
- •Силы ориентационного взаимодействия
- •Силы полухимического и химического взаимодействий
- •12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по особенностям внутренней геометрической структуры
- •12.4. Важнейшие адсорбенты и характеристика их свойств
- •Углеродные адсорбенты
- •Адсорбенты с большим содержанием кремниевой кислоты
- •Оксид алюминия
- •Органические сорбенты
- •12.5. Приложение теории адсорбции к газовой хроматографии
- •12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- •13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- •Стеклянные микрошарики
- •Силикагель
- •Оксид алюминия
- •Политетрафторэтилен
- •13.3. Неподвижные жидкие фазы
- •Химическая активность
- •Давление паров и термостойкость
- •Размеры молекул
- •Вязкость
- •Способность к растворению разделяемых соединений
- •Разделительные свойства
- •13.4. Классификация неподвижных жидких фаз
- •Шкала относительной полярности неподвижных жидких фаз
- •Классификация неподвижных жидких фаз по индексам удерживания Ковача
- •Классификация неподвижных жидких фаз по веществам-стандартам
- •Классификация неподвижных жидких фаз Мак-Рейнольдса
- •13.5. Важнейшие неподвижные жидкие фазы
- •Неароматические углеводороды
- •Ароматические углеводороды
- •Силиконы
- •Фенилсиликоны
- •Спирты, эфиры и производные углеводов
- •Полигликоли
- •Ароматические простые эфиры
- •Сложные эфиры
- •7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- •7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- •4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- •3. Жидкостная хроматография
- •Основное оборудование для тсх
- •Техника эксперимента в тсх
- •Сверхкритическая флюидная хроматография
- •Критические величины для подвижных фаз в сфх
- •2. Свойства сверхкритических флюидов, используемые
- •4. Приборное оформление
- •5. Современные задачи сфх с насадочными колонками
- •6. Заключение
- •6. Капиллярный электрофорез Введение
- •Принятые термины и сокращения
- •Физико-химические основы метода капиллярного электрофореза
- •Основные варианты капиллярного электрофореза
- •Аппаратура Общее устройство систем кэ
- •Капилляры
- •Источники высокого напряжения
- •Ввод пробы
- •Детекторы
- •Системы термостабилизации. Сбор и обработка данных
- •Эффективность разделения
- •Чувствительность метода
- •Разрешение и селективность разделения
- •Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- •Количественная обработка результатов анализа
- •Объекты для анализа методом кэ. Подготовка пробы
- •Электрофореза и примеры использования Анализ объектов окружающей среды.
- •Анализ неорганических анионов с обращением эоп (рис. 9)
- •Анализ неорганических анионов без обращения эоп (рис. 9)
- •Анализ неорганических катионов в яблочном соке (рис. 9)
- •Анализ ионного состава воды. Определение неорганических
- •Особенности методики, практические рекомендации
- •В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- •1.9. Качественный хроматографический анализ
- •5. Количественный анализ
- •11.1. Параметры пика как характеристика количества вещества
- •Параметр h
- •Параметр hl
- •Параметр а
- •Величины допустимых погрешностей задания параметров разделения
- •5.3.1 Методы триангуляции
- •7. Практическое использование хроматографии в контроле качества продукции
Сверхкритическая флюидная хроматография
В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточные между характеристиками газов и жидкостей, благодаря тому, что находится при так называемой критической температуре Тс и критическом давлениирс. Наиболее важными характеристиками используемых в хроматографии подвижных фаз являются плотность, вязкость и коэффициент диффузии. В табл. 1.3 сопоставляются эти характеристики для газов, сверхкритических флюидов и жидкостей. Аномально высокая плотность сверхкритических флюидов обусловливает чрезвычайно высокую растворяющую способность в них большинства нелетучих веществ. Например, диоксид углерода в сверхкритическом состоянии растворяетн-алканы с числом С-атомов от 5 до 40, а также очень многие полициклические ароматические углеводороды.
Величины критической температуры и критического давления для некоторых веществ, наиболее часто используемых в качестве подвижных фаз в СФХ, приведены в табл. 1.4. Оптимальными для
Таблица 1.3
Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика |
Газы |
Сверхкритические флюиды |
Жидкости |
Плотность, г/см3 |
0,6 10–3–2 10–3 |
0,2 – 0,5 |
0,6 – 2 |
Вязкость, г/(см · с) |
1 10–4–3 10–4 |
1 10–4–3 10–4 |
0,2 10–2–3 10–2 |
Коэффициент диффузии, см2/с |
0,6 10–3–2 10–3 |
0,6·10–3–2 10–3 |
0,6 10–3–2 10–3 |
СФХ параметрами являются температура около 1,2 Тс и давление от 1 до 3рс, т. е. находятся в диапазоне обычных для ГХ и ВЭЖХ условий, и, следовательно, хроматограф для СФХ может состоять из блоков, аналогичных применяемым в ГХ и ЖХ.
Таблица 1.4
Критические величины для подвижных фаз в сфх
Флюид |
Температура Тс,оС |
Давление рс, Па |
Плотность dc, г/см3 |
СО2 |
31,3 |
7,39 |
0,468 |
N2О |
36,5 |
7,27 |
0,457 |
NH3 |
132,5 |
11,40 |
0,235 |
Метанол |
239,4 |
8,10 |
0,272 |
н-Бутан |
152,0 |
3,80 |
0,228 |
Дифтордихлорметан |
111,8 |
4,12 |
0,558 |
Диэтиловый эфир |
195,6 |
3,64 |
0,265 |
Наиболее часто в качестве подвижной фазы в СФХ используют диоксид углерода, поскольку это достаточно дешевый, нетоксичный, не имеющий запаха, удобный в обращении реагент, не поглощающий УФ-излучение вплоть до 190 нм. Критические параметры диоксида углерода таковы, что температура и давление могут варьироваться в достаточно широких пределах. При его применении в качестве подвижной фазы оптимизация разделения компонентов смеси может быть достигнута введением органического модификатора, например метанола или диоксана.
Неподвижные фазы в СФХ могут находиться в набивных или капиллярных колонках. Набивные колонки заполняются адсорбентами с диаметром частиц 3–10 мкм, в капиллярных колонках из плавленого кварца в качестве неподвижных фаз используют жидкие или химически привитые на внутренних стенках силоксаны. Толщина слоя неподвижной фазы в капилляре составляет 0,05–1 мкм.
Следует обратить внимание на важную роль точной установки температуры и давления при проведении СФХ. Температура может поддерживаться с помощью обычных для ГХ колоночных термостатов. Давление в колонке необходимо точно контролировать, поскольку плотность сверхкритического флюида зависит от давления и изменения давления приводят к изменению коэффициентов емкости. Более высокое давление обеспечивает большую плотность флюида. Это повышает элюирующую силу подвижной фазы и снижает время удерживания компонентов разделяемой смеси. Например, увеличение давления диоксида углерода с 7 до 9 Мпа сокращает время удерживания компонентов некоторых смесей примерно в 5 раз. Благодаря этому в СФХ используют градиентное программирование давления, по достигаемому эффекту аналогичное программированию температурв в газовой хроматографии и градиентному элюированию в жидкостной.
Благодаря тому, что СФХ объединила преимущества газовой и жидкостной хроматографии, она особенно полезна при установлениии соединений, которые не могут быть определены ни ГХ, ни ЖХ. Это, с одной стороны, нелетучие вещества, которые не могут испаряться без разложения, и, с другой стороны, вещества, не содержащие функциональных групп и, следовательно, не дающие сигнал при использовании обычных для жидкостной хроматографии спектроскопических или электрохимических детекторов.
Примеров применения СФХ для определения нелетучих веществ с относительно высокой молекулярной массой достаточно много уже в настоящее время. С ее помощью эффективно анализируются многие природные продукты, лекарства, пищевые продукты, поверхностно-активные вещества, полимеры, сырая нефть и продукты ее переработки и многие другие объекты.
Сверхкритическая флюидная хроматография (СФХ) — вид элюентной хроматографии, в которой в качестве основного компонента подвижной фазы используется вещество в сверхкритическом или околокритическом состоянии. Впервые возможность использования растворителя при температурах выше критической в качестве элюента в хроматографии была показана в работе Клеспера 1962 года [1], однако долгое время этот метод не находил серьезного применения ввиду недостаточного развития приборной базы. Настоящее становление данной техники пришлось на 80—90-е годы, в немалой степени благодаря обострившемуся вниманию общества к проблемам природопользования и ресурсосбережения. В ходе поиска альтернативных, более экологически приемлемых и экономически выгодных лабораторных и промышленных технологий сверхкритические флюидные технологии, и в частности СФХ, стали пропагандироваться и использоваться не только в среде исследователей-энтузиастов. Так, например, газета Нью-Йорк Таймс 19 мая 1987 года писала: «Выше определенной температуры и давления вещество может быть переведено в некое особое состояние, называемое сверхкритическим флюидом... которое нельзя встретить на Земле в обычных условиях». В 1990—2000-е годы пристальное внимание было сконцентрировано на методах разделения энантиомеров с использованием сверхкритической хроматографии, поскольку именно в этой области экономические преимущества препаративной СФХ над ВЭЖХ (высокоэффективная жидкостная хроматография) дают особо заметный эффект. Однако в последнее время осваивается все больше новых сфер применения этого метода, ранее казавшихся недостижимыми для сверхкритической хроматографии. Ниже будет разобрано несколько примеров такого рода.