- •Предисловие
- •Введение
- •1. Хроматографические методы
- •1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- •Изотермы адсорбции
- •Изотермы адсорбции и форма фронтов зон
- •1.3 Теория теоретических тарелок
- •6.2. Оценка параметров эффективности и селективности хроматографической колонки
- •6.5. Степень разделения и ее связь с параметрами
- •Влияние условий анализа на эффективность разделения
- •7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- •8. Влияние температуры на параметры процесса разделения
- •1.5. Газовая хроматография
- •3.2. Газовый хроматограф. Принципиальная схема
- •Устройства ввода пробы в хроматограф
- •Ввод пробы
- •9.2. Чувствительность детектора. Предел обнаружения
- •9.3. Линейность детектора
- •9.4. Селективность детектора
- •1.3.5.1. Детекторы по теплопроводности
- •1.3.5.3. Пламенно-ионизационный детектор
- •Значения инкрементов функциональных групп и связей
- •Величины относительных молярных поправочных коэффициентов
- •1.3.5.4. Детектор электронного захвата
- •1.3.5.5. Детектор ионизационно-резонансный
- •1.5.5.6. Термоионный детектор
- •1.3.5.9.Фотоионизационный детектор (дфи)
- •3.1. Варианты метода газовой хроматографии
- •Силы дисперсионного взаимодействия
- •Силы индукционного взаимодействия
- •Силы ориентационного взаимодействия
- •Силы полухимического и химического взаимодействий
- •12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по особенностям внутренней геометрической структуры
- •12.4. Важнейшие адсорбенты и характеристика их свойств
- •Углеродные адсорбенты
- •Адсорбенты с большим содержанием кремниевой кислоты
- •Оксид алюминия
- •Органические сорбенты
- •12.5. Приложение теории адсорбции к газовой хроматографии
- •12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- •13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- •Стеклянные микрошарики
- •Силикагель
- •Оксид алюминия
- •Политетрафторэтилен
- •13.3. Неподвижные жидкие фазы
- •Химическая активность
- •Давление паров и термостойкость
- •Размеры молекул
- •Вязкость
- •Способность к растворению разделяемых соединений
- •Разделительные свойства
- •13.4. Классификация неподвижных жидких фаз
- •Шкала относительной полярности неподвижных жидких фаз
- •Классификация неподвижных жидких фаз по индексам удерживания Ковача
- •Классификация неподвижных жидких фаз по веществам-стандартам
- •Классификация неподвижных жидких фаз Мак-Рейнольдса
- •13.5. Важнейшие неподвижные жидкие фазы
- •Неароматические углеводороды
- •Ароматические углеводороды
- •Силиконы
- •Фенилсиликоны
- •Спирты, эфиры и производные углеводов
- •Полигликоли
- •Ароматические простые эфиры
- •Сложные эфиры
- •7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- •7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- •4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- •3. Жидкостная хроматография
- •Основное оборудование для тсх
- •Техника эксперимента в тсх
- •Сверхкритическая флюидная хроматография
- •Критические величины для подвижных фаз в сфх
- •2. Свойства сверхкритических флюидов, используемые
- •4. Приборное оформление
- •5. Современные задачи сфх с насадочными колонками
- •6. Заключение
- •6. Капиллярный электрофорез Введение
- •Принятые термины и сокращения
- •Физико-химические основы метода капиллярного электрофореза
- •Основные варианты капиллярного электрофореза
- •Аппаратура Общее устройство систем кэ
- •Капилляры
- •Источники высокого напряжения
- •Ввод пробы
- •Детекторы
- •Системы термостабилизации. Сбор и обработка данных
- •Эффективность разделения
- •Чувствительность метода
- •Разрешение и селективность разделения
- •Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- •Количественная обработка результатов анализа
- •Объекты для анализа методом кэ. Подготовка пробы
- •Электрофореза и примеры использования Анализ объектов окружающей среды.
- •Анализ неорганических анионов с обращением эоп (рис. 9)
- •Анализ неорганических анионов без обращения эоп (рис. 9)
- •Анализ неорганических катионов в яблочном соке (рис. 9)
- •Анализ ионного состава воды. Определение неорганических
- •Особенности методики, практические рекомендации
- •В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- •1.9. Качественный хроматографический анализ
- •5. Количественный анализ
- •11.1. Параметры пика как характеристика количества вещества
- •Параметр h
- •Параметр hl
- •Параметр а
- •Величины допустимых погрешностей задания параметров разделения
- •5.3.1 Методы триангуляции
- •7. Практическое использование хроматографии в контроле качества продукции
Силы индукционного взаимодействия
Если одна из взаимодействующих частиц неполярна, а вторая обладает дипольным моментом , между ними возникает индукционное взаимодействие, энергия которого описывается уравнением:
.
(86)
Обычно энергия индукционного взаимодействия составляет не более 5 % от общей энергии ван-дер-ваальсового взаимодействия. Так же, как и уравнение (84), последнее соотношение может применяться только в случае, когда расстояния между частицами намного больше, чем их ковалентные радиусы. Необходимо рассматривать взаимодействие лишь между двумя атомными группами, находящимися на минимальном расстоянии, принимается во внимание лишь диполь атомной группы или двух химически связанных атомов (диполь связи), поскольку суммарный дипольный момент молекулы относится к диполю, обладающему большим размером, чем ван-дер-ваальсов радиус атомной группы.
Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением:
.
(87)
Под взаимодействующими частицами в данном случае подразумеваются химически связанные атомы (микродиполи связей).
В отличие от дисперсионных и индукционных сил для ориентационных сил характерна векторная природа, т.е. энергия взаимодействия двух диполей зависит от их взаимной ориентации.
Максимальная энергия ориентационного взаимодействия реализуется тогда, когда микродиполи связей расположены параллельно и положительный полюс одного микродиполя расположен над отрицательным полюсом другого микродиполя. Практически такое оптимальное расположение взаимодействующих микродиполей не достигается в реальных газохроматографических системах: микродиполи жестко фиксированы в молекулах взаимодействующих веществ, а взаимная ориентация молекул далеко не всегда зависит от расположения и наличия в них микродиполей. Кроме того, с увеличением температуры возрастает кинетическая энергия молекул, вследствие чего возможность оптимальной ориентации микродиполей снижается.
Эти два обстоятельства приводят к тому, что при реализации ориентационного взаимодействия большую роль приобретает стерический фактор, т.е. возможность встречи двух микродиполей и оптимального их взаимного расположения.
Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда.
Образование водородных связей имеет место в том случае, когда молекулы, находящиеся на поверхности адсорбента, имеют, например, протоно-донорные атомы. Тогда при адсорбции веществ, имеющих, например, эфирную группировку, образуются водородные связи, энергия которых порядка 34 тысячи калорий, гораздо больше, чем энергия ван-дер-ваальсовых взаимодействий.
Образование комплексов переноса заряда происходит тогда, когда адсорбируемая молекула отдает электрон адсорбционным центрам адсорбента. Тогда адсорбируемая молекула приобретает положительный заряд, адсорбционный центр приобретает заряд отрицательный и образуется комплекс переноса заряда. Эта связь по прочности уже близка к химической.
И, наконец, хемосорбция – процесс адсорбции, протекающий за счет образования прочной химической связи – ковалентной связи.
