
- •Предисловие
- •Введение
- •1. Хроматографические методы
- •1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- •Изотермы адсорбции
- •Изотермы адсорбции и форма фронтов зон
- •1.3 Теория теоретических тарелок
- •6.2. Оценка параметров эффективности и селективности хроматографической колонки
- •6.5. Степень разделения и ее связь с параметрами
- •Влияние условий анализа на эффективность разделения
- •7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- •8. Влияние температуры на параметры процесса разделения
- •1.5. Газовая хроматография
- •3.2. Газовый хроматограф. Принципиальная схема
- •Устройства ввода пробы в хроматограф
- •Ввод пробы
- •9.2. Чувствительность детектора. Предел обнаружения
- •9.3. Линейность детектора
- •9.4. Селективность детектора
- •1.3.5.1. Детекторы по теплопроводности
- •1.3.5.3. Пламенно-ионизационный детектор
- •Значения инкрементов функциональных групп и связей
- •Величины относительных молярных поправочных коэффициентов
- •1.3.5.4. Детектор электронного захвата
- •1.3.5.5. Детектор ионизационно-резонансный
- •1.5.5.6. Термоионный детектор
- •1.3.5.9.Фотоионизационный детектор (дфи)
- •3.1. Варианты метода газовой хроматографии
- •Силы дисперсионного взаимодействия
- •Силы индукционного взаимодействия
- •Силы ориентационного взаимодействия
- •Силы полухимического и химического взаимодействий
- •12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- •Классификация адсорбентов по особенностям внутренней геометрической структуры
- •12.4. Важнейшие адсорбенты и характеристика их свойств
- •Углеродные адсорбенты
- •Адсорбенты с большим содержанием кремниевой кислоты
- •Оксид алюминия
- •Органические сорбенты
- •12.5. Приложение теории адсорбции к газовой хроматографии
- •12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- •13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- •Стеклянные микрошарики
- •Силикагель
- •Оксид алюминия
- •Политетрафторэтилен
- •13.3. Неподвижные жидкие фазы
- •Химическая активность
- •Давление паров и термостойкость
- •Размеры молекул
- •Вязкость
- •Способность к растворению разделяемых соединений
- •Разделительные свойства
- •13.4. Классификация неподвижных жидких фаз
- •Шкала относительной полярности неподвижных жидких фаз
- •Классификация неподвижных жидких фаз по индексам удерживания Ковача
- •Классификация неподвижных жидких фаз по веществам-стандартам
- •Классификация неподвижных жидких фаз Мак-Рейнольдса
- •13.5. Важнейшие неподвижные жидкие фазы
- •Неароматические углеводороды
- •Ароматические углеводороды
- •Силиконы
- •Фенилсиликоны
- •Спирты, эфиры и производные углеводов
- •Полигликоли
- •Ароматические простые эфиры
- •Сложные эфиры
- •7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- •7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- •4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- •3. Жидкостная хроматография
- •Основное оборудование для тсх
- •Техника эксперимента в тсх
- •Сверхкритическая флюидная хроматография
- •Критические величины для подвижных фаз в сфх
- •2. Свойства сверхкритических флюидов, используемые
- •4. Приборное оформление
- •5. Современные задачи сфх с насадочными колонками
- •6. Заключение
- •6. Капиллярный электрофорез Введение
- •Принятые термины и сокращения
- •Физико-химические основы метода капиллярного электрофореза
- •Основные варианты капиллярного электрофореза
- •Аппаратура Общее устройство систем кэ
- •Капилляры
- •Источники высокого напряжения
- •Ввод пробы
- •Детекторы
- •Системы термостабилизации. Сбор и обработка данных
- •Эффективность разделения
- •Чувствительность метода
- •Разрешение и селективность разделения
- •Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- •Количественная обработка результатов анализа
- •Объекты для анализа методом кэ. Подготовка пробы
- •Электрофореза и примеры использования Анализ объектов окружающей среды.
- •Анализ неорганических анионов с обращением эоп (рис. 9)
- •Анализ неорганических анионов без обращения эоп (рис. 9)
- •Анализ неорганических катионов в яблочном соке (рис. 9)
- •Анализ ионного состава воды. Определение неорганических
- •Особенности методики, практические рекомендации
- •В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- •1.9. Качественный хроматографический анализ
- •5. Количественный анализ
- •11.1. Параметры пика как характеристика количества вещества
- •Параметр h
- •Параметр hl
- •Параметр а
- •Величины допустимых погрешностей задания параметров разделения
- •5.3.1 Методы триангуляции
- •7. Практическое использование хроматографии в контроле качества продукции
7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
При переходе от насадочных колонок к капиллярным, вследствие изменения характера внутреннего пространства, претерпевают изменения и представления Ван-Деемтера.
Теория процесса разделения веществ в капиллярных колонках разработана М. Голеем (США, 1957 г.) из следующих предположений:
размывание зоны вещества в колонке происходит только вследствие процессов диффузии в потоке газа-носителя;
в хроматографической колонке реализуется только ламинарный характер течения газа-носителя по колонке;
неподвижная жидкая фаза зафиксирована на внутренней стенке капилляра в виде гомогенной жидкой пленки.
Развернутая форма уравнения Голея записывается
,
(44)
в котором r – радиус капиллярной колонки.
В общем виде уравнение Голея записывается:
.
(45)
Если принять, что Сg >> Cl, то можно рассчитать значение hmin
.
(46)
Из приведенного уравнения следует, что величина hmin пропорциональна радиусу капилляра и является функцией коэффициента емкости колонки.
Для несорбирующегося компонента (k = 0) hmin = 0.58 r, для компонента с величиной k > 100 hmin = 1.9 r.
Исходя из того же допущения, что Сg >> Cl, можно рассчитать и величину оптимальной скорости потока газа-носителя
.
(47)
Видно, что с уменьшением радиуса капилляра оптимальная скорость газа-носителя возрастает пропорционально коэффициенту диффузии исследуемого соединения в газе-носителе и величине коэффициента емкости колонки.
Для несорбирующегося компонента с k = 0 численное значение оптимальной скорости потока газаносителя рассчитывается по соотношению
uопт
= 6.9
,
а для компонента сk
= 100 uопт
= 2.1
.
Графическая зависимость высоты эквивалентной теоретической тарелки от скорости потока газа-носителя, при его ламинарном течении, аналогична, как и для насадочных колонок.
На
рис. 19 а
представлено влияние величины внутреннего
диаметра капиллярной колонки, а на рис.
19 б
влияние величины коэффициента емкости
капиллярной колонки к исследуемому
соединению на ее эффективность.
Рис. 19. График зависимости высоты тарелки от линейной скорости газа-носителя для полой капиллярной колонки (н-гексан, газ-носитель – гелий):
a – влияние внутреннего диаметра колонки (k = 1): 1dc = 0,1 mm; 2–dc = 0,25 mm; 3 – dc = 0,5 mm; б – влияние коэффициента емкости колонки (dc=0,25 mm):1 – k = 0; 2 – k = 1; 3 – k = 2; 4 – k = 5; 5 – k = 10
Однако дальнейшее увеличение объемной скорости потока газа-носителя приводит к изменению характера течения – ламинарное течение сменяется турбулентным, для которого характерны внезапные локальные изменения скорости, изменение направления движения потока, изменение величины давления.
Обычно тип течения жидкости определяется величиной критерия Рейнольдса “Re”, определяемого из соотношения:
,
(48)
где u линейная скорость потока газа-носителя; r радиус капилляра;v кинематическая вязкость газа-носителя.
Графическая
зависимость высоты эквивалентной
теоретической тарелки от величины
критерия Рейнольдса приведена на рис.20.
Рис.
20. Зависимость
высоты эквивалентной теоретической
тарелки от величины критерия Рейнольдса:
а – область ламинарного течения, б – область турбулентного течения потока газа-носителя
Для капиллярных колонок оптимальная практическая линейная скорость потока газа-носителя лежит в области от 3 до 8 м/мин.