Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Radiatsionnaya_gigiena (2).docx
Скачиваний:
91
Добавлен:
25.03.2015
Размер:
491.39 Кб
Скачать

(Слайд № 57) Защитное экранирование

Мощность дозы может быть уменьшена посредством установки защиты (экранирования), так как любой материал поглощает ионизирующее излучение. Именно поэтому Вы подвергаетесь мень­шему количеству излучения, если имеется защита между Вами и источником излучения.

бумага Плексиглас Свинец

Обратите внимание на альфа-, бета- и гамма-излучение, воздей­ствующие на тонкий лист бумаги (см. рисунок 6.6). Как Вы знаете, пробег альфа-частицы довольно маленький. Она останавливается тон­ким слоем кожного покрова, тем более листом бумаги. Бета- и гам­ма-излучение лист бумаги не остановит. Плексиглас остановит бета-излучение полностью. Гамма-излучение будет несколько ослаблено, но, в целом, свободно проникает сквозь плексиглас.

Следующий вид защиты — свинцовый защитный экран. Здесь гамма-излучение будет значительно уменьшено, но оно не будет остановлено полностью.

(слайд № 58) Хорошими материалами экранирования, помимо свинца, яв­ляются бетон и вода. Оптимальная толщина защитного экрана зависит от энергии излучения и активности источника излуче­ния. Вычисление толщины защиты довольно сложное, но можно воспользоваться такими данными:

  • 1 сантиметр свинца уменьшит мощность дозы гамма-излу­чения (кобальт-60) в 2 раза;

  • 5 сантиметров бетона уменьшат мощность дозы гамма-излу­чения (кобальт-60) в 2 раза;

  • 10 сантиметров воды уменьшат мощность дозы гамма-излу­чения (кобальт-60) в 2 раза.

(слайд № 59) В радиационной гигиене существует такое понятие, как Слой половинного ослабления (СПО) – им называют толщину экрана, при прохождении через которую доза снизится в 2 раза. Для свинца СПО = 1,8 см, для железа, стали и чугуна – 2,4 см, для бетона – 10 см. Формула для расчета толщины экрана: Кэ= 2n, где “n” – число слоев половинного ослабления.

Для защиты от -излучения экраны из тяжелых металлов применяться не могут, т.к. электроны и позитроны, нарушая равновесие электронных оболочек атомов этих металлов, возбуждают их и вызывают выброс энергии в виде тормозного рентгеновского излучения.

(слайд № 60) Экраны для защиты от внешнего -излучения делают из легких материалов с малым атомным номером: органическое стекло, различные пластмассы, алюминий и т.п. Для расчета толщины экрана в этом случае применяется эмпирическая формула: S = 2  Emax, где S – толщина экрана в см; Еmax – максимальная энергия излучения изотопа.

Экраны для защиты от нейтронного излучения призваны замедлить быстрые нейтроны, способные создавать наведенную радиоактивность. Для этого используются материалы, в составе которых много атомов водорода: вода, парафин, бетон. Тепловые нейтроны хорошо поглощаются кадмием и бором, которые используются как материал для экранов. Процесс поглощения нейтронов сопровождается излучением -квантов, поэтому дополнительно необходимо использовать экраны из свинца или другого материала для их поглощения.

Защитные экраны могут быть представлены контейнерами для хранения радиоактивных препаратов, экранами для оборудования, передвижными защитными экранами у рабочего места, строительными конструкциями (стенами, полами, потолками, специально утолщенными дверьми), а также индивидуальными средствами защиты (очки из оргстекла, просвинцованные перчатки).

-излучатели как источники внешнего облучения не требуют специальных мер защиты, поскольку проникающая способность -частиц ничтожно мала.

Рентгеновское излучение. Меры защиты персонала и пациентов при проведении рентгенодиагностических исследова­ний.

(слайд № 61) Источником рентгеновского излучения является рентгеновская трубка. Рентгеновское излучение относится к фотонным излучениям и поэтому обла­дает следующими свойствами:

1) Большая проникающая способность (в воздухе 100 м и более).

2) Минимальная ионизирующая способность (единицы пар ионов на см про­бега).

Говоря о конкретном проявлении действия рентгеновского излучения на организм человека, надо вспомнить, что ионизирующее излучение может вы­зывать две группы эффектов (пороговые и беспороговые).

Рентгеновское излучение естественно не применяется в дозах, способных вызвать пороговые эффекты, а вот беспороговые эффекты (канцерогенное, мутагенное действие и тд.), не требующие высоких доз, вполне вероятны.

Рентгеновское излучение широко применяется в медицине с диагностиче­ской целью и поэтому вносит большой вклад в облучение населения. При медицинском облучении используются принципы контроля и ограничения ра­диационного воздействия, основанные на получении полезного диагностиче­ского и (или) терапевтического результата при минимальном облучении па­циента. Нормы разрабатываются федеральными органами здравоохранения совместно с Госсанэпиднадзором.

Флюорография грудной клетки - 0.1 Бэра

Рентгенография грудной клетки - 0.2 - 0.3 Бэра

Рентгеноскопическое исследование - 3-5 Бэр

Меры защиты персонала и пациентов при проведении рентгенодиагностических исследований.

Используются определенные системы мероприятий для снижения радиа­ционной нагрузки на пациентов и персонал. При этом организационные меры играют основную роль.

(слайд № 62) Защита пациентов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]