
- •Министерство сельского хозяйства Российской Федерации
- •Лекция 1 электростатика
- •1.1. Электромагнитное взаимодействие. Электрический заряд. Закон Кулона.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.
- •Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •Потенциалы простейших электрических полей.
- •Потенциал поля точечного заряда.
- •Вопросы для самоконтроля
- •Лекция 2 электростатика
- •2.1. Понятие о потоке вектора и его дивергенции. Теорема Остроградского-Гаусса. Теорема Гаусса для вектора е в дифференциальной и интегральной форме.
- •2.2. Электрическое поле в диэлектриках.
- •Основные теоремы электростатики в интегральной и дифференциальной форме.
- •Электроемкость проводников. Конденсаторы.
- •Вычисление емкости простых конденсаторов.
- •Энергия заряженного проводника и заряженного конденсатора.
- •Энергия электростатического поля.
- •Вопросы для самоконтроля.
- •Лекция 3 постоянный электрический ток
- •Закон Ома для однородного участка цепи. Сопротивление проводников.
- •Дифференциальная форма закона Ома.
- •Кпд источника тока.
- •3.2. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •Вопросы для самоконтроля
- •Лекция 4 магнитное поле
- •4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.
- •Взаимодействие проводников с током. Закон Ампера.
- •Взаимодействие двух прямолинейных проводников с током.
- •. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •4.2. Теорема о циркуляции. Магнитное поле движущихся зарядов. Сила Лоренца. Дифференциальная форма теоремы о циркуляции.
- •Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Работа перемещения контура с током в магнитном поле. Магнитный момент.
- •Момент сил, действующих на контур с током в магнитном поле.
- •Энергия контура с током в магнитном поле.
- •Контур с током в неоднородном магнитном поле.
- •Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Вопросы для самоконтроля
- •Лекция 5 электромагнитная индукция
- •5.1. Закон электромагнитной индукции Фарадея и правило Ленца. Явление самоиндукции, взаимная индукция. Индуктивность длинного соленоида. Энергия магнитного поля.
- •Явление самоиндукции. Индуктивность проводников.
- •Пример вычисления индуктивности. Индуктивность соленоида.
- •Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •Энергия магнитного поля. Плотность энергии.
- •5.2. Электромагнитные колебания. Явление резонанса. Колебательный контур.
- •Аналогия между электрическими и механическими колебаниями.
- •5.3. Переменный ток. Получение переменного тока. Индуктивность и емкость в цепи переменного тока.
- •5.4. Магнитное поле в веществе. Классификация магнетиков. Ферромагнетизм.
- •Виды магнетиков.
- •Вопросы для самоконтроля
- •Лекция 6 основы теории максвелла для электромагнитного поля
- •6.1. Система уравнений Максвелла в дифференциальной и интегральной
- •Форме. Ток смещения.
- •Теорема о циркуляции магнитного поля.
- •Закон Фарадея:
- •Система уравнений Максвелла.
- •Энергия и поток энергии. Теорема Пойнтинга.
- •Вопросы для самоконтроля
- •Содержание
Закон Ома для однородного участка цепи. Сопротивление проводников.
Между
падением потенциала - напряжением U
и силой тока в проводнике I
существует функциональная зависимость
,
называемаявольтамперной
характеристикой
данного проводника (ВАХ). Вид этой
зависимости для разных проводников и
устройств может быть самым разнообразным.
Как
показывает опыт, для многих проводящих
материалов выполняется зависимость:
,
получившая название закона
Ома
(Ohm
G.,
1787-1854) для однородного
участка
цепи. (ВАХ приведена на рис. 3.1.).
Коэффициент пропорциональности R называется сопротивлением проводника. Сопротивление однородного проводника зависит от материала, из которого он изготовлен, его формы, размеров, а также от температуры.
Рисунок 3.1 Вольтамперная
характеристика.
Размерность
сопротивления:
[R]
=
.
Кратные единицы измерения: 1кОм = 103Ом ; 1Мом = 106Ом.
ρ – удельное сопротивление. Размерность ρ в СИ: [ρ] = Ом∙м.
Для многих веществ зависимость сопротивления от температуры в широком интервале температур вблизи Т≈300К определяется эмпирической зависимостью от температуры их удельного сопротивления:
,
где
α
– температурный коэффициент сопротивления;
-
значение
при
.
Для
металлов
,
поэтому сопротивление металлов в
указанной области температур
пропорционально температуре (рис. 3.2.).
Рисунок 3.2. Зависимость сопротивления от температуры (для металлов).
Для электролитов α<0, зависимость их сопротивления от температуры имеет вид, изображенный на рис.. Для разных электролитов α различно.
Рис. 3. Зависимость сопротивления от температуры (для электролитов).
Дифференциальная форма закона Ома.
Если
проводник неоднороден по своему составу
и/или имеет неодинаковое сечение, то
для характеристики тока в различных
частях проводника используют закон
Ома
в
дифференциальной
форме.
Для его вывода выделим внутри проводника
элементарный цилиндрический объем с
образующими, параллельными вектору
плотности тока
.
Если выделенный объем достаточно мал,
его можно считатьоднородным
и
применить к нему закон Ома:
,
где
,
откуда
Или в векторном виде:
Величина
называетсякоэффициентом
электропроводности
или проводимостью
материала. Единицей
измерения σ
в
СИ
является (Ом∙м)-1=См
(сименс).
Работа и мощность постоянного тока. Закон Джоуля – Ленца.
При протекании по проводнику электрического тока проводник нагревается. Нагревание происходит за счет работы, совершаемой силами поля над носителями заряда:
,
Джоуль (Joule J., 1818-1889) и независимо от него Э.Х.Ленц (1804-1865) установили экспериментально, что количество теплоты, выделяющейся в проводнике, пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока:
Если
сила тока изменяется со временем, то за
промежуток времени Δt
= t2
– t1
выделится теплота:
Написанные соотношения выражают собой закон Джоуля – Ленца.
Если
теплоту измерять в калориях,
то:
.
Количество теплоты, выделяющееся в единице объема проводника за единицу времени, называется удельной мощностью:
,
где
-
плотность тока.
Это
соотношение представляет собой закон
Джоуля-Ленца
в
дифференциальной
форме:
Работа, производимая током за единицу времени, называется мощностью:
.
Размерность
мощности в СИ:
(ватт).