
- •Министерство сельского хозяйства Российской Федерации
- •Лекция 1 электростатика
- •1.1. Электромагнитное взаимодействие. Электрический заряд. Закон Кулона.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.
- •Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •Потенциалы простейших электрических полей.
- •Потенциал поля точечного заряда.
- •Вопросы для самоконтроля
- •Лекция 2 электростатика
- •2.1. Понятие о потоке вектора и его дивергенции. Теорема Остроградского-Гаусса. Теорема Гаусса для вектора е в дифференциальной и интегральной форме.
- •2.2. Электрическое поле в диэлектриках.
- •Основные теоремы электростатики в интегральной и дифференциальной форме.
- •Электроемкость проводников. Конденсаторы.
- •Вычисление емкости простых конденсаторов.
- •Энергия заряженного проводника и заряженного конденсатора.
- •Энергия электростатического поля.
- •Вопросы для самоконтроля.
- •Лекция 3 постоянный электрический ток
- •Закон Ома для однородного участка цепи. Сопротивление проводников.
- •Дифференциальная форма закона Ома.
- •Кпд источника тока.
- •3.2. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •Вопросы для самоконтроля
- •Лекция 4 магнитное поле
- •4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.
- •Взаимодействие проводников с током. Закон Ампера.
- •Взаимодействие двух прямолинейных проводников с током.
- •. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •4.2. Теорема о циркуляции. Магнитное поле движущихся зарядов. Сила Лоренца. Дифференциальная форма теоремы о циркуляции.
- •Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Работа перемещения контура с током в магнитном поле. Магнитный момент.
- •Момент сил, действующих на контур с током в магнитном поле.
- •Энергия контура с током в магнитном поле.
- •Контур с током в неоднородном магнитном поле.
- •Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Вопросы для самоконтроля
- •Лекция 5 электромагнитная индукция
- •5.1. Закон электромагнитной индукции Фарадея и правило Ленца. Явление самоиндукции, взаимная индукция. Индуктивность длинного соленоида. Энергия магнитного поля.
- •Явление самоиндукции. Индуктивность проводников.
- •Пример вычисления индуктивности. Индуктивность соленоида.
- •Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •Энергия магнитного поля. Плотность энергии.
- •5.2. Электромагнитные колебания. Явление резонанса. Колебательный контур.
- •Аналогия между электрическими и механическими колебаниями.
- •5.3. Переменный ток. Получение переменного тока. Индуктивность и емкость в цепи переменного тока.
- •5.4. Магнитное поле в веществе. Классификация магнетиков. Ферромагнетизм.
- •Виды магнетиков.
- •Вопросы для самоконтроля
- •Лекция 6 основы теории максвелла для электромагнитного поля
- •6.1. Система уравнений Максвелла в дифференциальной и интегральной
- •Форме. Ток смещения.
- •Теорема о циркуляции магнитного поля.
- •Закон Фарадея:
- •Система уравнений Максвелла.
- •Энергия и поток энергии. Теорема Пойнтинга.
- •Вопросы для самоконтроля
- •Содержание
Вопросы для самоконтроля.
Какое практическое применение имеет теорема Остроградского-Гаусса?
Что характеризует относительная диэлектрическая проницаемость?
Объясните, почему поляризация диэлектрика ликвидируется при устранении внешнего электрического поля, вызвавшего эту поляризацию?
Каким соотношением связаны между собой напряженность Е и его электрическая индукция D?
От чего и как зависит плотность энергии электрического поля?
Покажите, что проводник можно считать диэлектриком с бесконечно большим значением относительной диэлектрической проницаемости.
Четыре одинаковых конденсатора соединяются один раз параллельно, другой последовательно. В каком случае и во сколько раз емкость блока будет больше?
Чему равен радиус уединенному проводящего шара емкостью 100 пФ?
Как определяется энергия электрического поля?
СПИСОК ЛИТЕРАТУРЫ
Основная
Детлаф А.А. Курс физики учеб. пособие / А.А. Детлаф, Б.М. Яворский.-7-е изд. Стер.-М. : ИЦ «Академия».-2008.-720 с.
Савельев И.В. Курс физики: в 3т.:учеб.пособие/И.В. Савельев.-4-е изд. стер. – СПб.; М. Краснодар: Лань.-2008
Т.2: Электричество. Колебания и волны. Волновая оптика. – 480 с.
Трофимова Т.И. курс физики: учеб. пособие/ Т.И. Трофимова.- 15-е изд., стер.- М.: ИЦ «Академия», 2007.-560 с.
Дополнительная
Фейнман, Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. – М.: Мир.
Т.1. Современная наука о природе. Законы механики. – 1965. –232 с.
Т. 2. Пространство, время, движение. – 1965. – 168 с.
Т. 3. Излучение. Волны. Кванты. – 1965. – 240 с.
Берклеевский курс физики. Т.1,2,3. – М.: Наука, 1984
Т. 1. Китель, Ч. Механика / Ч. Китель, У. Найт, М. Рудерман. – 480 с.
Т. 2. Парселл, Э. Электричество и магнетизм / Э. Парселл. – 448 с.
Т. 3. Крауфорд, Ф. Волны / Ф. Крауфорд – 512 с.
Фриш, С.Э. Курс общей физики: в 3 т.: учеб. / С.Э. Фриш, А.В. Тиморева.- СПб.: М.; Краснодар: Лань.-2009.
Т. 1. Физические основы механики. Молекулярная физика. Колебания и волны: учебник - 480 с.
Т.2: Электрические и электромагнитные явления: учебник. – 518 с.
Т. 3. Оптика. Атомная физика : учебник– 656 с.
Лекция 3 постоянный электрический ток
3.1. Электрический ток. Плотность тока, сила тока. Закон сохранения заряда, его интегральная и дифференциальная формулировки. Дифференциальная форма закона Ома. Отсутствие внутри проводника объемных зарядов, электрическое поле внутри проводника. Работа и мощность тока. Дифференциальная форма закона Джоуля-Ленца.
Всякое упорядоченное движение зарядов называется электрическим током. Носителями заряда в проводящих средах могут быть электроны, ионы, «дырки» и даже макроскопические заряженные частицы.
За положительное направление тока принято считать направление движения положительных зарядов. Электрический ток характеризуется силой тока – величиной, определяемой количеством заряда, переносимого через воображаемую площадку, за единицу времени:
Для постоянного тока силу тока можно определить как:
Размерность
силы тока в СИ:
(ампер).
Кроме этого, для характеристики тока в проводнике применяют понятие плотности тока – векторной величины, определяемой количеством заряда, переносимого за единицу времени через единичную площадку, перпендикулярную линиям тока:
Размерность
плотности тока в СИ:
.
Покажем,
что плотность тока
пропорциональна скорости упорядоченного
движения зарядов в проводнике
.
Действительно, количество заряда,
протекающее через поперечное сечение
проводника за единицу времени:
,
где
- концентрация зарядов
.
Или
в векторном виде:
Как мы знаем, при равновесии зарядов, то есть при отсутствии тока, потенциал всех точек проводника имеет одно и то же значение, а напряженность электрического поля внутри него равна нулю. При наличии тока электрическое поле внутри проводника отлично от нуля, и вдоль проводника с током имеет место падение потенциала.
Таким образом, для существования тока в проводнике необходимо выполнение двух условий: 1) наличие носителей заряда и 2) наличие электрического поля в проводнике.