- •Министерство сельского хозяйства Российской Федерации
- •Лекция 1 электростатика
- •1.1. Электромагнитное взаимодействие. Электрический заряд. Закон Кулона.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.
- •Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •Потенциалы простейших электрических полей.
- •Потенциал поля точечного заряда.
- •Вопросы для самоконтроля
- •Лекция 2 электростатика
- •2.1. Понятие о потоке вектора и его дивергенции. Теорема Остроградского-Гаусса. Теорема Гаусса для вектора е в дифференциальной и интегральной форме.
- •2.2. Электрическое поле в диэлектриках.
- •Основные теоремы электростатики в интегральной и дифференциальной форме.
- •Электроемкость проводников. Конденсаторы.
- •Вычисление емкости простых конденсаторов.
- •Энергия заряженного проводника и заряженного конденсатора.
- •Энергия электростатического поля.
- •Вопросы для самоконтроля.
- •Лекция 3 постоянный электрический ток
- •Закон Ома для однородного участка цепи. Сопротивление проводников.
- •Дифференциальная форма закона Ома.
- •Кпд источника тока.
- •3.2. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •Вопросы для самоконтроля
- •Лекция 4 магнитное поле
- •4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.
- •Взаимодействие проводников с током. Закон Ампера.
- •Взаимодействие двух прямолинейных проводников с током.
- •. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •4.2. Теорема о циркуляции. Магнитное поле движущихся зарядов. Сила Лоренца. Дифференциальная форма теоремы о циркуляции.
- •Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Работа перемещения контура с током в магнитном поле. Магнитный момент.
- •Момент сил, действующих на контур с током в магнитном поле.
- •Энергия контура с током в магнитном поле.
- •Контур с током в неоднородном магнитном поле.
- •Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Вопросы для самоконтроля
- •Лекция 5 электромагнитная индукция
- •5.1. Закон электромагнитной индукции Фарадея и правило Ленца. Явление самоиндукции, взаимная индукция. Индуктивность длинного соленоида. Энергия магнитного поля.
- •Явление самоиндукции. Индуктивность проводников.
- •Пример вычисления индуктивности. Индуктивность соленоида.
- •Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •Энергия магнитного поля. Плотность энергии.
- •5.2. Электромагнитные колебания. Явление резонанса. Колебательный контур.
- •Аналогия между электрическими и механическими колебаниями.
- •5.3. Переменный ток. Получение переменного тока. Индуктивность и емкость в цепи переменного тока.
- •5.4. Магнитное поле в веществе. Классификация магнетиков. Ферромагнетизм.
- •Виды магнетиков.
- •Вопросы для самоконтроля
- •Лекция 6 основы теории максвелла для электромагнитного поля
- •6.1. Система уравнений Максвелла в дифференциальной и интегральной
- •Форме. Ток смещения.
- •Теорема о циркуляции магнитного поля.
- •Закон Фарадея:
- •Система уравнений Максвелла.
- •Энергия и поток энергии. Теорема Пойнтинга.
- •Вопросы для самоконтроля
- •Содержание
Основные теоремы электростатики в интегральной и дифференциальной форме.
1) Теорема Гаусса.
(вакуум)
(среда)
По теореме преобразования поверхностного интеграла в объемный (теореме Остроградского) имеем:
![]()
откуда следует дифференциальная форма записи теоремы Гаусса:
![]()
где ρ – объемная плотность сторонних зарядов;
.
Используя
определение
,
нетрудно показать, что
,
где
-
объемная плотностьсвязанных
зарядов.
2)
Теорема о циркуляции электрического
поля.
![]()
По теореме преобразования контурного интеграла в поверхностный (теореме Стокса) имеем:
,
откуда следует дифференциальная форма второй основной теоремы электростатики
![]()
где
.
Граничные условия для электрического поля.
При
переходе через границу раздела двух
диэлектриков с различными диэлектрическими
проницаемостями ε1
и
ε2
(рис.3.12) необходимо учитывать граничные
условия для полей
и
,
которые непосредственно вытекают из
основных интегральных теорем
электростатики.
![]()
Нормальные
составляющие индукции поля непрерывны
![]()
Учитывая,
что
,
находим также:
![]()
Тангенциальные составляющие электрического поля непрерывны
![]()

Поскольку
,
то![]()
2.3. Электрические поля вокруг проводников. Потенциал проводника. Емкость уединенного проводника. Конденсаторы. Энергия заряженного конденсатора, энергия электрического поля.
Р
![]()
О
пыт
показывает, что приравновесии
электрические заряды распределяются
на внешней
поверхности
проводников (рис. 1). Поэтому, согласно
теореме Гаусса, электрическое поле
внутри проводника
,
а потенциалφ
=
const.
Из
сказанного следует, что при равновесии
зарядов поверхность проводника является
эквипотенциальной.
Вблизи поверхности заряженного проводника
силовые линии перпендикулярны его
поверхности, и поэтому работа по
перемещению заряда вдоль любой линии
на поверхности проводника
.
При внесении незаряженного проводника в электрическое поле на его внешней поверхности появляются индукционные заряды противоположного знака, электрическое поле которых компенсирует внутри проводника внешнее поле.
Электроемкость проводников. Конденсаторы.
Заряд q, сообщенный уединенному проводнику создает вокруг него электрическое поле, напряженность которого пропорциональна величине заряда. Потенциал поля φ, в свою очередь, связан с напряженностью поля также пропорциональной зависимостью. Следовательно, заряд и потенциал уединенного проводника связаны между собой линейной зависимостью: q = Cφ.
Коэффициент пропорциональности С называется электроемкостью (или просто емкостью) проводника. Емкость проводника зависит от его формы и размеров, а также свойств окружающей проводник среды. Если проводник находится в непроводящей среде с диэлектрической проницаемостью ε, то его емкость увеличивается в ε раз.
Единицы
измерения электроемкости в СИ:
![]()
Пара проводников, между которыми имеется разность потенциалов, называется простейшим конденсатором. Индуцированные на проводниках заряды равны по величине и противоположны по знаку. Заряд каждой пластины по абсолютной величине
![]()
Если
пространство между проводниками
заполнено средой с диэлектрической
проницаемостью ε,
то
![]()
где С0 - емкость конденсатора в вакууме.
