
- •Министерство сельского хозяйства Российской Федерации
- •Лекция 1 электростатика
- •1.1. Электромагнитное взаимодействие. Электрический заряд. Закон Кулона.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.
- •Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •Потенциалы простейших электрических полей.
- •Потенциал поля точечного заряда.
- •Вопросы для самоконтроля
- •Лекция 2 электростатика
- •2.1. Понятие о потоке вектора и его дивергенции. Теорема Остроградского-Гаусса. Теорема Гаусса для вектора е в дифференциальной и интегральной форме.
- •2.2. Электрическое поле в диэлектриках.
- •Основные теоремы электростатики в интегральной и дифференциальной форме.
- •Электроемкость проводников. Конденсаторы.
- •Вычисление емкости простых конденсаторов.
- •Энергия заряженного проводника и заряженного конденсатора.
- •Энергия электростатического поля.
- •Вопросы для самоконтроля.
- •Лекция 3 постоянный электрический ток
- •Закон Ома для однородного участка цепи. Сопротивление проводников.
- •Дифференциальная форма закона Ома.
- •Кпд источника тока.
- •3.2. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •Вопросы для самоконтроля
- •Лекция 4 магнитное поле
- •4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.
- •Взаимодействие проводников с током. Закон Ампера.
- •Взаимодействие двух прямолинейных проводников с током.
- •. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •4.2. Теорема о циркуляции. Магнитное поле движущихся зарядов. Сила Лоренца. Дифференциальная форма теоремы о циркуляции.
- •Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Работа перемещения контура с током в магнитном поле. Магнитный момент.
- •Момент сил, действующих на контур с током в магнитном поле.
- •Энергия контура с током в магнитном поле.
- •Контур с током в неоднородном магнитном поле.
- •Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Вопросы для самоконтроля
- •Лекция 5 электромагнитная индукция
- •5.1. Закон электромагнитной индукции Фарадея и правило Ленца. Явление самоиндукции, взаимная индукция. Индуктивность длинного соленоида. Энергия магнитного поля.
- •Явление самоиндукции. Индуктивность проводников.
- •Пример вычисления индуктивности. Индуктивность соленоида.
- •Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •Энергия магнитного поля. Плотность энергии.
- •5.2. Электромагнитные колебания. Явление резонанса. Колебательный контур.
- •Аналогия между электрическими и механическими колебаниями.
- •5.3. Переменный ток. Получение переменного тока. Индуктивность и емкость в цепи переменного тока.
- •5.4. Магнитное поле в веществе. Классификация магнетиков. Ферромагнетизм.
- •Виды магнетиков.
- •Вопросы для самоконтроля
- •Лекция 6 основы теории максвелла для электромагнитного поля
- •6.1. Система уравнений Максвелла в дифференциальной и интегральной
- •Форме. Ток смещения.
- •Теорема о циркуляции магнитного поля.
- •Закон Фарадея:
- •Система уравнений Максвелла.
- •Энергия и поток энергии. Теорема Пойнтинга.
- •Вопросы для самоконтроля
- •Содержание
Напряжение на зажимах источника тока.
Как видно из рисунка:
или
П
V
V = ε для разомкнутой цепи.
Вопросы для самоконтроля
Почему сопротивление проводников уменьшается при повышении температуры?
Сформулируйте закон Ома для однородного участка цепи?
Что называется силой тока?
Что называется электродвижущей силой генератора?
Объясните происхождение сторонних сил.
Сколько электронов проходит в 1 с через поперечное сечение медного провода при силе тока 1 А?
Что называется узлом разветвления электрической цепи?
Запишите математические выражения первого и второго правил Кирхгофа. Сформулируйте эти правила.
Как определяется работа и мощность электрического поля?
Сформулируйте закон Джоуля-Ленца.
Как определяется закон Ома для неоднородного участка цепи? для замкнутой цепи?
От чего зависит и как определяется КПД источника тока?
СПИСОК ЛИТЕРАТУРЫ
Основная
Детлаф, А.А. Курс физики учеб. пособие / А.А. Детлаф, Б.М. Яворский.-7-е изд. Стер.-М. : ИЦ «Академия».-2008.-720 с.
Савельев, И.В. Курс физики: в 3т.:учеб.пособие Т.1: Электричество. Колебания и волны. Волновая оптика. /И.В. Савельев.-4-е изд. стер. – СПб.; М. Краснодар: Лань.-2008. – 480 с.
Трофимова, Т.И. курс физики: учеб. пособие/ Т.И. Трофимова.- 15-е изд., стер.- М.: ИЦ «Академия», 2007.-560 с.
Дополнительная
Фейнман, Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. – М.: Мир.
Т.1. Современная наука о природе. Законы механики. – 1965. –232 с.
Т. 2. Пространство, время, движение. – 1965. – 168 с.
Т. 3. Излучение. Волны. Кванты. – 1965. – 240 с.
Берклеевский курс физики. Т.1,2,3. – М.: Наука, 1984
Т. 1. Китель, Ч. Механика / Ч. Китель, У. Найт, М. Рудерман. – 480 с.
Т. 2. Парселл, Э. Электричество и магнетизм / Э. Парселл. – 448 с.
Т. 3. Крауфорд, Ф. Волны / Ф. Крауфорд – 512 с.
Фриш, С.Э. Курс общей физики: в 3 т.: учеб. / С.Э. Фриш, А.В. Тиморева.- СПб.: М.; Краснодар: Лань.-2009.
Т.1. Физические основы механики. Молекулярная физика. Колебания и волны: учебник - 480 с.
Т.2: Электрические и электромагнитные явления: учебник. – 518 с.
Т. 3. Оптика. Атомная физика : учебник– 656 с.
Лекция 4 магнитное поле
4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.
Взаимодействие проводников с током. Закон Ампера.
Известно, что постоянный магнит оказывает действие на проводник с током (например, рамку с током); известно также обратное явление – проводник с током оказывает действие на постоянный магнит (например, на магнитную стрелку компаса).
Рисунок 4.1. Действие постоянного магнита на рамку с током и проводника с током на магнитную стрелку компаса.
Естественно поставить вопрос: а не может ли один проводник с током оказывать непосредственное действие на другой проводник с током? Положительный ответ на этот вопрос дал в 1820г. Ампер (Ampere A., 1775-1836), установивший силовой закон взаимодействия проводников с током.
Взаимодействие двух прямолинейных проводников с током.
Так, два прямолинейных параллельных проводника (рис. 4.2.) притягиваются, если токи в них текут в одном направлении и отталкиваются, если токи имеют противоположное направление.
Рисунок 4.2.Взаимодейтвие параллельных проводников с током.
Для
того, чтобы сформулировать закон Ампера
в современном виде, введем понятие
элемента
тока
как вектора, равного произведению
силы тока I
на элемент длины
проводника. Элемент
тока
в
магнитостатике
играет ту же роль, что и точечный
заряд
в электростатике.
Рисунок 4.3.Элемент проводника с током.
Своими опытами Ампер установил, что сила взаимодействия двух элементов тока:
1)
;
2)
;
3)
- зависит от взаимной ориентации
элементов тока.
Объединяя эти результаты, можем написать закон Ампера в виде:
Углы θ1 и θ2 характеризуют ориентацию элементов тока (рис. 4.4.); Коэффициент пропорциональности k зависит от выбора системы единиц измерения.
Рисунок 4.4. Взаимодействие двух элементов тока.
В
системе СИ:
,
где
- магнитная постоянная.
Закон
Ампера
является аналогом закона
Кулона
в магнитостатике и выражает собой силу
взаимодействия двух элементов тока.
Однако в отличие от закона Кулона, он
имеет более сложное написание, что
обусловлено тем, что элемент тока (в
отличие от точечного заряда) характеризуется
не только величиной, но и направлением
в пространстве. Заметим, что согласно
закону Ампера
(см. рис.4.). Это кажущееся
противоречие
с третьим
законом Ньютона
связано с тем, что в действительности
мы имеем дело не с элементами токов, а
с замкнутыми
макроскопическими
токами, для которых третий закон Ньютона
выполняется.
В векторной форме закон Ампера записывается следующим образом: